Compare commits

...

13 Commits
7 ... 0.6.328

Author SHA1 Message Date
XScorpion2
c98247e3dd RGB Matrix Overhaul (#5372)
* RGB Matrix overhaul
Breakout of animations to separate files
Integration of optimized int based math lib
Overhaul of rgb_matrix.c and animations for performance

* Updating effect function api for future extensions

* Combined the keypresses || keyreleases define checks into a single define so I stop forgetting it where necessary

* Moving define RGB_MATRIX_KEYREACTIVE_ENABLED earlier in the include chain
2019-04-02 17:24:14 -07:00
Jack
68d8bb2b3f [Keyboard] Add handwired keyboard "Tennie" (#5507)
* Add tennie

* Jacobs Functions

* Switch back to normal layout

* Remove define from old template

* Fix broken keymaps

* Correct style errors, add bootlite

* Update readmes. Rename test keymap

* Missed comma

* Switch rgb from init to post init
2019-04-02 16:13:08 -07:00
DDRnJn
61b2f2b16e Added some new songs (#5525)
Added Fantasie Impromptu and Nocturne Op. 9 No. 1 in B flat minor by Chopin
Added Isabella's Lullaby from The Promised Neverland
Added Renai Circulation and Platinum Disco from Monogatari
Added Terra's theme from Final Fantasy 6
2019-04-02 11:51:28 -07:00
David Rambo
b23752c840 [Keymap] Minor update to my XD75 keymap (#5531)
* Updated iris, planck, and xd75 keymaps

* Added brightness down and up to commented layout of Symbol layer.

* updated config files for planck and iris

* removed unnecessary include lines from iris and planck config files

* updated XD75's PC layer and its NAVPC toggle layer

* fixed typo in alias declaration for C_BSPS

* changed alias names for BSPC toggle keys
2019-04-02 11:50:22 -07:00
Nicolas CARPi
448d3ad8de [Keymap] Add alternate bépo layout for Ergodox EZ (#5524)
The other bépo layouts were a bit too complex/weird or without LED code
and hard to transition to for new users. This config is a good base for
bépo users.
2019-04-01 21:18:06 -07:00
AbstractKB
8b8d69f0df [Keymap] Updated my personal keymaps for the bfo9000 and jj50 (#5508)
* Updated my personal keymaps for the bfo9000 and jj50

* fixed best practices mistakes
2019-04-01 20:58:47 -07:00
Garret G
fbee737ff3 [Keyboard] add support for romac macropad (#5530)
* add support for romac macropad

* Update info.json

fixed total key_count

* Update keymap.c

* Update keymap.c

* Update README.md

* Update config.h

* Update romac.h

* Update romac.h

* Update romac.h

* Update rules.mk

* Update config.h

* Update README.md

* Update romac.h

* Update README.md

* Update README.md

* Update README.md

* Update config.h

* Update config.h

* Update config.h

* Update info.json

* Update info.json

* Update info.json

* Update keymap.c

* Update keymap.c

* Update keymap.c

* Update README.md

* Update README.md

* Update README.md

* Update config.h

* Rename README.md to readme.md

* Update rules.mk

* Update config.h

* Delete .gitattributes

* Update romac.h

* Update config.h

* Update config.h

* Update keymap.c

* Update keymap.c

* Update keymap.c

* Update readme.md

* Update readme.md

* Update readme.md

* Update info.json

* Update config.h

* Update config.h

* Update config.h

* Update readme.md
2019-04-01 20:31:38 -07:00
zvecr
40c6269f9f Fix typo in keyboard_post_init_user example, remove EPRM from Persistent Configuration (EEPROM) (#5528) 2019-04-01 11:32:39 -07:00
Alex Mayer
58b065cfda 1UP Keyboards: Use Right Variant Of Keys On Right Side Of Board (#5529) 2019-04-01 09:02:30 -07:00
yfuku
3654d0f080 [Keyboard] add claw44 keyboard (#5511)
* add claw44 keyboard

* Update keyboards/claw44/lib/layer_state_reader.c

Co-Authored-By: yfuku <30647434+yfuku@users.noreply.github.com>

* Update keyboards/claw44/lib/layer_state_reader.c

Co-Authored-By: yfuku <30647434+yfuku@users.noreply.github.com>

* Update keyboards/claw44/lib/layer_state_reader.c

Co-Authored-By: yfuku <30647434+yfuku@users.noreply.github.com>

* Update keyboards/claw44/lib/layer_state_reader.c

Co-Authored-By: yfuku <30647434+yfuku@users.noreply.github.com>

* Update keyboards/claw44/readme.md

Co-Authored-By: yfuku <30647434+yfuku@users.noreply.github.com>

* Remove unnecessary code because of default value

* Move layer definition

* Update keyboards/claw44/keymaps/default/keymap.c

Co-Authored-By: yfuku <30647434+yfuku@users.noreply.github.com>

* Update keyboards/claw44/keymaps/yfuku/keymap.c

Co-Authored-By: yfuku <30647434+yfuku@users.noreply.github.com>

* Update keyboards/claw44/readme.md

Co-Authored-By: yfuku <30647434+yfuku@users.noreply.github.com>

* default keymap. LAYOUT_kc -> LAYOUT macro

* Move rules.mk from keymaps to keyboard level.

* add Hardware Supported, Hardware Availability

* Update keyboards/claw44/keymaps/default/keymap.c

Co-Authored-By: yfuku <30647434+yfuku@users.noreply.github.com>

* Update keyboards/claw44/keymaps/yfuku/keymap.c

Co-Authored-By: yfuku <30647434+yfuku@users.noreply.github.com>

* Remove depreciated function
2019-03-30 12:16:18 -07:00
David Rambo
4f7dd9edf8 [Keymap] Updated my iris, planck, and xd75 keymaps (#5515)
* Updated iris, planck, and xd75 keymaps

* Added brightness down and up to commented layout of Symbol layer.

* updated config files for planck and iris

* removed unnecessary include lines from iris and planck config files
2019-03-30 11:05:31 -07:00
Mikhail Goncharov
93210547bd Update build instructions and Dockerfile to download submodules 2019-03-30 10:48:09 -07:00
Wilba
b846c25a56 [Keyboard] Added RAMA KOYU (#5512)
* Initial commit of RAMA KOYU

* Changed default layout

* removed IS_COMMAND()
2019-03-29 22:13:28 -07:00
124 changed files with 8878 additions and 1131 deletions

View File

@@ -26,4 +26,4 @@ VOLUME /qmk_firmware
WORKDIR /qmk_firmware
COPY . .
CMD make $KEYBOARD:$KEYMAP
CMD make clean ; make git-submodule ; make $KEYBOARD:$KEYMAP

View File

@@ -235,7 +235,7 @@ This example, running after everything else has initialized, sets up the rgb und
void keyboard_post_init_user(void) {
// Call the post init code.
rgblight_enable_noeeprom(); // enables Rgb, without saving settings
rgblight_sethsv_noeeprom(180, 255, 255): // sets the color to teal/cyan without saving
rgblight_sethsv_noeeprom(180, 255, 255); // sets the color to teal/cyan without saving
rgblight_mode_noeeprom(RGBLIGHT_MODE_BREATHING + 3); // sets mode to Fast breathing without saving
}
```
@@ -342,7 +342,7 @@ This is an example of how to add settings, and read and write it. We're using th
In your keymap.c file, add this to the top:
```
```c
typedef union {
uint32_t raw;
struct {
@@ -358,7 +358,7 @@ This sets up a 32 bit structure that we can store settings with in memory, and w
We're using `rgb_layer_change`, for the `layer_state_set_*` function, and use `keyboard_post_init_user` and `process_record_user` to configure everything.
Now, using the `keyboard_post_init_user` code above, you want to add `eeconfig_read_user()` to it, to populate the structure you've just created. And you can then immediately use this structure to control functionality in your keymap. And It should look like:
```
```c
void keyboard_post_init_user(void) {
// Call the keymap level matrix init.
@@ -375,7 +375,7 @@ void keyboard_post_init_user(void) {
```
The above function will use the EEPROM config immediately after reading it, to set the default layer's RGB color. The "raw" value of it is converted in a usable structure based on the "union" that you created above.
```
```c
uint32_t layer_state_set_user(uint32_t state) {
switch (biton32(state)) {
case _RAISE:
@@ -397,8 +397,8 @@ uint32_t layer_state_set_user(uint32_t state) {
return state;
}
```
This will cause the RGB underglow to be changed ONLY if the value was enabled. Now to configure this value, create a new keycode for `process_record_user` called `RGB_LYR` and `EPRM`. Additionally, we want to make sure that if you use the normal RGB codes, that it turns off Using the example above, make it look this:
```
This will cause the RGB underglow to be changed ONLY if the value was enabled. Now to configure this value, create a new keycode for `process_record_user` called `RGB_LYR`. Additionally, we want to make sure that if you use the normal RGB codes, that it turns off Using the example above, make it look this:
```c
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
switch (keycode) {
@@ -415,11 +415,6 @@ bool process_record_user(uint16_t keycode, keyrecord_t *record) {
PLAY_NOTE_ARRAY(tone_qwerty);
}
return true; // Let QMK send the enter press/release events
case EPRM:
if (record->event.pressed) {
eeconfig_init(); // resets the EEPROM to default
}
return false;
case RGB_LYR: // This allows me to use underglow as layer indication, or as normal
if (record->event.pressed) {
user_config.rgb_layer_change ^= 1; // Toggles the status
@@ -442,9 +437,9 @@ bool process_record_user(uint16_t keycode, keyrecord_t *record) {
}
}
```
And lastly, you want to add the `eeconfig_init_user` function, so that when the EEPROM is reset, you can specify default values, and even custom actions. For example, if you want to set rgb layer indication by default, and save the default valued.
And lastly, you want to add the `eeconfig_init_user` function, so that when the EEPROM is reset, you can specify default values, and even custom actions. To force an EEPROM reset, use the `EEP_RST` keycode or [Bootmagic](feature_bootmagic.md) functionallity. For example, if you want to set rgb layer indication by default, and save the default valued.
```
```c
void eeconfig_init_user(void) { // EEPROM is getting reset!
user_config.raw = 0;
user_config.rgb_layer_change = true; // We want this enabled by default

View File

@@ -10,39 +10,45 @@ If you want to use single color LED's you should use the [LED Matrix Subsystem](
There is basic support for addressable RGB matrix lighting with the I2C IS31FL3731 RGB controller. To enable it, add this to your `rules.mk`:
RGB_MATRIX_ENABLE = IS31FL3731
```C
RGB_MATRIX_ENABLE = IS31FL3731
```
Configure the hardware via your `config.h`:
// This is a 7-bit address, that gets left-shifted and bit 0
// set to 0 for write, 1 for read (as per I2C protocol)
// The address will vary depending on your wiring:
// 0b1110100 AD <-> GND
// 0b1110111 AD <-> VCC
// 0b1110101 AD <-> SCL
// 0b1110110 AD <-> SDA
#define DRIVER_ADDR_1 0b1110100
#define DRIVER_ADDR_2 0b1110110
```C
// This is a 7-bit address, that gets left-shifted and bit 0
// set to 0 for write, 1 for read (as per I2C protocol)
// The address will vary depending on your wiring:
// 0b1110100 AD <-> GND
// 0b1110111 AD <-> VCC
// 0b1110101 AD <-> SCL
// 0b1110110 AD <-> SDA
#define DRIVER_ADDR_1 0b1110100
#define DRIVER_ADDR_2 0b1110110
#define DRIVER_COUNT 2
#define DRIVER_1_LED_TOTAL 25
#define DRIVER_2_LED_TOTAL 24
#define DRIVER_LED_TOTAL DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL
#define DRIVER_COUNT 2
#define DRIVER_1_LED_TOTAL 25
#define DRIVER_2_LED_TOTAL 24
#define DRIVER_LED_TOTAL DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL
```
Currently only 2 drivers are supported, but it would be trivial to support all 4 combinations.
Define these arrays listing all the LEDs in your `<keyboard>.c`:
const is31_led g_is31_leds[DRIVER_LED_TOTAL] = {
/* Refer to IS31 manual for these locations
* driver
* | R location
* | | G location
* | | | B location
* | | | | */
{0, C1_3, C2_3, C3_3},
....
}
```C
const is31_led g_is31_leds[DRIVER_LED_TOTAL] = {
/* Refer to IS31 manual for these locations
* driver
* | R location
* | | G location
* | | | B location
* | | | | */
{0, C1_3, C2_3, C3_3},
....
}
```
Where `Cx_y` is the location of the LED in the matrix defined by [the datasheet](http://www.issi.com/WW/pdf/31FL3731.pdf) and the header file `drivers/issi/is31fl3731.h`. The `driver` is the index of the driver you defined in your `config.h` (`0` or `1` right now).
@@ -50,60 +56,70 @@ Where `Cx_y` is the location of the LED in the matrix defined by [the datasheet]
There is basic support for addressable RGB matrix lighting with the I2C IS31FL3733 RGB controller. To enable it, add this to your `rules.mk`:
RGB_MATRIX_ENABLE = IS31FL3733
```C
RGB_MATRIX_ENABLE = IS31FL3733
```
Configure the hardware via your `config.h`:
// This is a 7-bit address, that gets left-shifted and bit 0
// set to 0 for write, 1 for read (as per I2C protocol)
// The address will vary depending on your wiring:
// 00 <-> GND
// 01 <-> SCL
// 10 <-> SDA
// 11 <-> VCC
// ADDR1 represents A1:A0 of the 7-bit address.
// ADDR2 represents A3:A2 of the 7-bit address.
// The result is: 0b101(ADDR2)(ADDR1)
#define DRIVER_ADDR_1 0b1010000
#define DRIVER_ADDR_2 0b1010000 // this is here for compliancy reasons.
```C
// This is a 7-bit address, that gets left-shifted and bit 0
// set to 0 for write, 1 for read (as per I2C protocol)
// The address will vary depending on your wiring:
// 00 <-> GND
// 01 <-> SCL
// 10 <-> SDA
// 11 <-> VCC
// ADDR1 represents A1:A0 of the 7-bit address.
// ADDR2 represents A3:A2 of the 7-bit address.
// The result is: 0b101(ADDR2)(ADDR1)
#define DRIVER_ADDR_1 0b1010000
#define DRIVER_ADDR_2 0b1010000 // this is here for compliancy reasons.
#define DRIVER_COUNT 2
#define DRIVER_1_LED_TOTAL 64
#define DRIVER_LED_TOTAL DRIVER_1_LED_TOTAL
#define DRIVER_COUNT 2
#define DRIVER_1_LED_TOTAL 64
#define DRIVER_LED_TOTAL DRIVER_1_LED_TOTAL
```
Currently only a single drivers is supported, but it would be trivial to support all 4 combinations. For now define `DRIVER_ADDR_2` as `DRIVER_ADDR_1`
Define these arrays listing all the LEDs in your `<keyboard>.c`:
const is31_led g_is31_leds[DRIVER_LED_TOTAL] = {
/* Refer to IS31 manual for these locations
* driver
* | R location
* | | G location
* | | | B location
* | | | | */
{0, B_1, A_1, C_1},
....
}
```C
const is31_led g_is31_leds[DRIVER_LED_TOTAL] = {
/* Refer to IS31 manual for these locations
* driver
* | R location
* | | G location
* | | | B location
* | | | | */
{0, B_1, A_1, C_1},
....
}
```
Where `X_Y` is the location of the LED in the matrix defined by [the datasheet](http://www.issi.com/WW/pdf/31FL3733.pdf) and the header file `drivers/issi/is31fl3733.h`. The `driver` is the index of the driver you defined in your `config.h` (Only `0` right now).
From this point forward the configuration is the same for all the drivers.
const rgb_led g_rgb_leds[DRIVER_LED_TOTAL] = {
/* {row | col << 4}
* | {x=0..224, y=0..64}
* | | modifier
* | | | */
{{0|(0<<4)}, {20.36*0, 21.33*0}, 1},
{{0|(1<<4)}, {20.36*1, 21.33*0}, 1},
....
}
```C
const rgb_led g_rgb_leds[DRIVER_LED_TOTAL] = {
/* {row | col << 4}
* | {x=0..224, y=0..64}
* | | modifier
* | | | */
{{0|(0<<4)}, {20.36*0, 21.33*0}, 1},
{{0|(1<<4)}, {20.36*1, 21.33*0}, 1},
....
}
```
The format for the matrix position used in this array is `{row | (col << 4)}`. The `x` is between (inclusive) 0-224, and `y` is between (inclusive) 0-64. The easiest way to calculate these positions is:
x = 224 / ( NUMBER_OF_COLS - 1 ) * ROW_POSITION
y = 64 / (NUMBER_OF_ROWS - 1 ) * COL_POSITION
```C
x = 224 / ( NUMBER_OF_COLS - 1 ) * ROW_POSITION
y = 64 / (NUMBER_OF_ROWS - 1 ) * COL_POSITION
```
Where all variables are decimels/floats.
@@ -113,48 +129,50 @@ Where all variables are decimels/floats.
All RGB keycodes are currently shared with the RGBLIGHT system:
* `RGB_TOG` - toggle
* `RGB_MOD` - cycle through modes
* `RGB_HUI` - increase hue
* `RGB_HUD` - decrease hue
* `RGB_SAI` - increase saturation
* `RGB_SAD` - decrease saturation
* `RGB_VAI` - increase value
* `RGB_VAD` - decrease value
* `RGB_SPI` - increase speed effect (no EEPROM support)
* `RGB_SPD` - decrease speed effect (no EEPROM support)
* `RGB_MODE_*` keycodes will generally work, but are not currently mapped to the correct effects for the RGB Matrix system
* `RGB_TOG` - toggle
* `RGB_MOD` - cycle through modes
* `RGB_HUI` - increase hue
* `RGB_HUD` - decrease hue
* `RGB_SAI` - increase saturation
* `RGB_SAD` - decrease saturation
* `RGB_VAI` - increase value
* `RGB_VAD` - decrease value
* `RGB_SPI` - increase speed effect (no EEPROM support)
* `RGB_SPD` - decrease speed effect (no EEPROM support)
* `RGB_MODE_*` keycodes will generally work, but are not currently mapped to the correct effects for the RGB Matrix system
## RGB Matrix Effects
These are the effects that are currently available:
All effects have been configured to support current configuration values (Hue, Saturation, Value, & Speed) unless otherwise noted below. These are the effects that are currently available:
enum rgb_matrix_effects {
RGB_MATRIX_SOLID_COLOR = 1,
RGB_MATRIX_ALPHAS_MODS,
RGB_MATRIX_DUAL_BEACON,
RGB_MATRIX_GRADIENT_UP_DOWN,
RGB_MATRIX_RAINDROPS,
RGB_MATRIX_CYCLE_ALL,
RGB_MATRIX_CYCLE_LEFT_RIGHT,
RGB_MATRIX_CYCLE_UP_DOWN,
RGB_MATRIX_RAINBOW_BEACON,
RGB_MATRIX_RAINBOW_PINWHEELS,
RGB_MATRIX_RAINBOW_MOVING_CHEVRON,
RGB_MATRIX_JELLYBEAN_RAINDROPS,
RGB_MATRIX_DIGITAL_RAIN,
#ifdef RGB_MATRIX_KEYPRESSES
RGB_MATRIX_SOLID_REACTIVE,
RGB_MATRIX_REACTIVE_SIMPLE,
RGB_MATRIX_SPLASH,
RGB_MATRIX_MULTISPLASH,
RGB_MATRIX_SOLID_SPLASH,
RGB_MATRIX_SOLID_MULTISPLASH,
#endif
RGB_MATRIX_EFFECT_MAX
};
```C
enum rgb_matrix_effects {
RGB_MATRIX_NONE = 0,
RGB_MATRIX_SOLID_COLOR = 1, // Static single hue, no speed support
RGB_MATRIX_ALPHAS_MODS, // Static dual hue, speed is hue for secondary hue
RGB_MATRIX_GRADIENT_UP_DOWN, // Static gradient top to bottom, speed controls how much gradient changes
RGB_MATRIX_BREATHING, // Single hue brightness cycling animation
RGB_MATRIX_CYCLE_ALL, // Full keyboard solid hue cycling through full gradient
RGB_MATRIX_CYCLE_LEFT_RIGHT, // Full gradient scrolling left to right
RGB_MATRIX_CYCLE_UP_DOWN, // Full gradient scrolling top to bottom
RGB_MATRIX_RAINBOW_MOVING_CHEVRON, // Full gradent Chevron shapped scrolling left to right
RGB_MATRIX_DUAL_BEACON, // Full gradient spinning around center of keyboard
RGB_MATRIX_RAINBOW_BEACON, // Full tighter gradient spinning around center of keyboard
RGB_MATRIX_RAINBOW_PINWHEELS, // Full dual gradients spinning two halfs of keyboard
RGB_MATRIX_RAINDROPS, // Randomly changes a single key's hue
RGB_MATRIX_JELLYBEAN_RAINDROPS, // Randomly changes a single key's hue and saturation
RGB_MATRIX_DIGITAL_RAIN, // That famous computer simulation
#if defined(RGB_MATRIX_KEYPRESSES) || defined(RGB_MATRIX_KEYRELEASES)
RGB_MATRIX_SOLID_REACTIVE_SIMPLE, // Pulses keys hit to hue & value then fades value out
RGB_MATRIX_SOLID_REACTIVE, // Static single hue, pulses keys hit to shifted hue then fades to current hue
RGB_MATRIX_SPLASH, // Full gradient & value pulse away from a single key hit then fades value out
RGB_MATRIX_MULTISPLASH, // Full gradient & value pulse away from multiple key hits then fades value out
RGB_MATRIX_SOLID_SPLASH, // Hue & value pulse away from a single key hit then fades value out
RGB_MATRIX_SOLID_MULTISPLASH, // Hue & value pulse away from multiple key hits then fades value out
#endif
RGB_MATRIX_EFFECT_MAX
};
```
You can disable a single effect by defining `DISABLE_[EFFECT_NAME]` in your `config.h`:
@@ -162,19 +180,20 @@ You can disable a single effect by defining `DISABLE_[EFFECT_NAME]` in your `con
|Define |Description |
|---------------------------------------------------|--------------------------------------------|
|`#define DISABLE_RGB_MATRIX_ALPHAS_MODS` |Disables `RGB_MATRIX_ALPHAS_MODS` |
|`#define DISABLE_RGB_MATRIX_DUAL_BEACON` |Disables `RGB_MATRIX_DUAL_BEACON` |
|`#define DISABLE_RGB_MATRIX_GRADIENT_UP_DOWN` |Disables `RGB_MATRIX_GRADIENT_UP_DOWN` |
|`#define DISABLE_RGB_MATRIX_RAINDROPS` |Disables `RGB_MATRIX_RAINDROPS` |
|`#define DISABLE_RGB_MATRIX_BREATHING` |Disables `RGB_MATRIX_BREATHING` |
|`#define DISABLE_RGB_MATRIX_CYCLE_ALL` |Disables `RGB_MATRIX_CYCLE_ALL` |
|`#define DISABLE_RGB_MATRIX_CYCLE_LEFT_RIGHT` |Disables `RGB_MATRIX_CYCLE_LEFT_RIGHT` |
|`#define DISABLE_RGB_MATRIX_CYCLE_UP_DOWN` |Disables `RGB_MATRIX_CYCLE_UP_DOWN` |
|`#define DISABLE_RGB_MATRIX_RAINBOW_MOVING_CHEVRON`|Disables `RGB_MATRIX_RAINBOW_MOVING_CHEVRON`|
|`#define DISABLE_RGB_MATRIX_DUAL_BEACON` |Disables `RGB_MATRIX_DUAL_BEACON` |
|`#define DISABLE_RGB_MATRIX_RAINBOW_BEACON` |Disables `RGB_MATRIX_RAINBOW_BEACON` |
|`#define DISABLE_RGB_MATRIX_RAINBOW_PINWHEELS` |Disables `RGB_MATRIX_RAINBOW_PINWHEELS` |
|`#define DISABLE_RGB_MATRIX_RAINBOW_MOVING_CHEVRON`|Disables `RGB_MATRIX_RAINBOW_MOVING_CHEVRON`|
|`#define DISABLE_RGB_MATRIX_RAINDROPS` |Disables `RGB_MATRIX_RAINDROPS` |
|`#define DISABLE_RGB_MATRIX_JELLYBEAN_RAINDROPS` |Disables `RGB_MATRIX_JELLYBEAN_RAINDROPS` |
|`#define DISABLE_RGB_MATRIX_DIGITAL_RAIN` |Disables `RGB_MATRIX_DIGITAL_RAIN` |
|`#define DISABLE_RGB_MATRIX_SOLID_REACTIVE` |Disables `RGB_MATRIX_SOLID_REACTIVE` |
|`#define DISABLE_RGB_MATRIX_REACTIVE_SIMPLE` |Disables `RGB_MATRIX_REACTIVE_SIMPLE` |
|`#define DISABLE_RGB_MATRIX_SOLID_REACTIVE_SIMPLE` |Disables `RGB_MATRIX_SOLID_REACTIVE_SIMPLEE`|
|`#define DISABLE_RGB_MATRIX_SPLASH` |Disables `RGB_MATRIX_SPLASH` |
|`#define DISABLE_RGB_MATRIX_MULTISPLASH` |Disables `RGB_MATRIX_MULTISPLASH` |
|`#define DISABLE_RGB_MATRIX_SOLID_SPLASH` |Disables `RGB_MATRIX_SOLID_SPLASH` |
@@ -185,26 +204,33 @@ You can disable a single effect by defining `DISABLE_[EFFECT_NAME]` in your `con
Custom layer effects can be done by defining this in your `<keyboard>.c`:
void rgb_matrix_indicators_kb(void) {
rgb_matrix_set_color(index, red, green, blue);
}
```C
void rgb_matrix_indicators_kb(void) {
rgb_matrix_set_color(index, red, green, blue);
}
```
A similar function works in the keymap as `rgb_matrix_indicators_user`.
## Additional `config.h` Options
#define RGB_MATRIX_KEYPRESSES // reacts to keypresses (will slow down matrix scan by a lot)
#define RGB_MATRIX_KEYRELEASES // reacts to keyreleases (not recommened)
#define RGB_DISABLE_AFTER_TIMEOUT 0 // number of ticks to wait until disabling effects
#define RGB_DISABLE_WHEN_USB_SUSPENDED false // turn off effects when suspended
#define RGB_MATRIX_SKIP_FRAMES 1 // number of frames to skip when displaying animations (0 is full effect) if not defined defaults to 1
#define RGB_MATRIX_MAXIMUM_BRIGHTNESS 200 // limits maximum brightness of LEDs to 200 out of 255. If not defined maximum brightness is set to 255
```C
#define RGB_MATRIX_KEYPRESSES // reacts to keypresses
#define RGB_MATRIX_KEYRELEASES // reacts to keyreleases (instead of keypresses)
#define RGB_DISABLE_AFTER_TIMEOUT 0 // number of ticks to wait until disabling effects
#define RGB_DISABLE_WHEN_USB_SUSPENDED false // turn off effects when suspended
#define RGB_MATRIX_LED_PROCESS_LIMIT (DRIVER_LED_TOTAL + 4) / 5 // limits the number of LEDs to process in an animation per task run (increases keyboard responsiveness)
#define RGB_MATRIX_LED_FLUSH_LIMIT 16 // limits in milliseconds how frequently an animation will update the LEDs. 16 (16ms) is equivalent to limiting to 60fps (increases keyboard responsiveness)
#define RGB_MATRIX_MAXIMUM_BRIGHTNESS 200 // limits maximum brightness of LEDs to 200 out of 255. If not defined maximum brightness is set to 255
```
## EEPROM storage
The EEPROM for it is currently shared with the RGBLIGHT system (it's generally assumed only one RGB would be used at a time), but could be configured to use its own 32bit address with:
#define EECONFIG_RGB_MATRIX (uint32_t *)16
```C
#define EECONFIG_RGB_MATRIX (uint32_t *)16
```
Where `16` is an unused index from `eeconfig.h`.
@@ -212,12 +238,14 @@ Where `16` is an unused index from `eeconfig.h`.
To use the suspend feature, add this to your `<keyboard>.c`:
void suspend_power_down_kb(void)
{
rgb_matrix_set_suspend_state(true);
}
```C
void suspend_power_down_kb(void)
{
rgb_matrix_set_suspend_state(true);
}
void suspend_wakeup_init_kb(void)
{
rgb_matrix_set_suspend_state(false);
}
void suspend_wakeup_init_kb(void)
{
rgb_matrix_set_suspend_state(false);
}
```

View File

@@ -2,6 +2,8 @@
This page describes setting up the build environment for QMK. These instructions cover AVR processors (such as the atmega32u4).
After cloning the repo of QMK run `make git-submodule` once to download 3rd party libraries like ChibiOS.
<!-- FIXME: We should have ARM instructions somewhere. -->
Note: If it is your first time here, Check out the "Complete Newbs guide" instead

View File

@@ -22,7 +22,7 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
KC_TAB, KC_Q, KC_W, KC_E, KC_R, KC_T, KC_Y, KC_U, KC_I, KC_O, KC_P, KC_LBRC, KC_RBRC, KC_BSLS,
KC_CAPS, KC_A, KC_S, KC_D, KC_F, KC_G, KC_H, KC_J, KC_K, KC_L, KC_SCLN, KC_QUOT, KC_ENT,
KC_LSFT, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_N, KC_M, KC_COMM, KC_DOT, KC_SLSH, KC_RSFT,
KC_LCTL, KC_LGUI, KC_LALT, KC_SPC, KC_RALT, KC_RGUI, MO(1), KC_LCTL
KC_LCTL, KC_LGUI, KC_LALT, KC_SPC, KC_RALT, KC_RGUI, MO(1), KC_RCTL
),
[1] = LAYOUT_60_ansi(

View File

@@ -21,9 +21,9 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
KC_ESC, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, KC_MINS, KC_EQL, KC_BSLS, KC_GRV,
KC_TAB, KC_Q, KC_W, KC_E, KC_R, KC_T, KC_Y, KC_U, KC_I, KC_O, KC_P, KC_LBRC, KC_RBRC, KC_BSPC,
KC_LCTL, KC_A, KC_S, KC_D, KC_F, KC_G, KC_H, KC_J, KC_K, KC_L, KC_SCLN, KC_QUOT, KC_ENT,
KC_LSFT, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_N, KC_M, KC_COMM, KC_DOT, KC_SLSH, KC_LSFT, MO(1),
KC_LCTL, KC_LALT, KC_LGUI, KC_SPC, KC_LGUI, KC_LALT, KC_LCTL),
KC_LSFT, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_N, KC_M, KC_COMM, KC_DOT, KC_SLSH, KC_RSFT, MO(1),
KC_LCTL, KC_LALT, KC_LGUI, KC_SPC, KC_RGUI, KC_RALT, KC_RCTL),
[1] = LAYOUT_tsangan(
RESET, KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6, KC_F7, KC_F8, KC_F9, KC_F10, KC_F11, KC_F12, KC_INS, KC_DEL,
KC_CAPS, BL_TOGG, BL_DEC, BL_INC, BL_STEP, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_SLCK, KC_PAUS, KC_UP, KC_TRNS, KC_CLR,

View File

@@ -21,9 +21,9 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
KC_ESC, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, KC_MINS, KC_EQL, KC_BSLS, KC_GRV,
KC_TAB, KC_Q, KC_W, KC_E, KC_R, KC_T, KC_Y, KC_U, KC_I, KC_O, KC_P, KC_LBRC, KC_RBRC, KC_BSPC,
KC_LCTL, KC_A, KC_S, KC_D, KC_F, KC_G, KC_H, KC_J, KC_K, KC_L, KC_SCLN, KC_QUOT, KC_ENT,
KC_LSFT, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_N, KC_M, KC_COMM, KC_DOT, KC_SLSH, KC_LSFT, MO(1),
KC_NO, KC_LALT, KC_LGUI, KC_SPC, KC_LGUI, KC_LALT, KC_NO),
KC_LSFT, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_N, KC_M, KC_COMM, KC_DOT, KC_SLSH, KC_RSFT, MO(1),
KC_NO, KC_LALT, KC_LGUI, KC_SPC, KC_RGUI, KC_RALT, KC_NO),
[1] = LAYOUT_tsangan(
RESET, KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6, KC_F7, KC_F8, KC_F9, KC_F10, KC_F11, KC_F12, KC_INS, KC_DEL,
KC_CAPS, BL_TOGG, BL_DEC, BL_INC, BL_STEP, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_SLCK, KC_PAUS, KC_UP, KC_TRNS, KC_CLR,

10
keyboards/claw44/claw44.c Normal file
View File

@@ -0,0 +1,10 @@
#include "claw44.h"
#include "ssd1306.h"
bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
#ifdef SSD1306OLED
return process_record_gfx(keycode,record) && process_record_user(keycode, record);
#else
return process_record_user(keycode, record);
#endif
}

View File

@@ -0,0 +1,5 @@
#pragma once
#ifdef KEYBOARD_claw44_rev1
#include "rev1.h"
#endif

28
keyboards/claw44/config.h Normal file
View File

@@ -0,0 +1,28 @@
/*
Copyright 2012 Jun Wako <wakojun@gmail.com>
Copyright 2015 Jack Humbert
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "config_common.h"
#include <serial_config.h>
#define USE_I2C
#define USE_SERIAL
#define NO_ACTION_MACRO
#define NO_ACTION_FUNCTION

162
keyboards/claw44/i2c.c Normal file
View File

@@ -0,0 +1,162 @@
#include <util/twi.h>
#include <avr/io.h>
#include <stdlib.h>
#include <avr/interrupt.h>
#include <util/twi.h>
#include <stdbool.h>
#include "i2c.h"
#ifdef USE_I2C
// Limits the amount of we wait for any one i2c transaction.
// Since were running SCL line 100kHz (=> 10μs/bit), and each transactions is
// 9 bits, a single transaction will take around 90μs to complete.
//
// (F_CPU/SCL_CLOCK) => # of μC cycles to transfer a bit
// poll loop takes at least 8 clock cycles to execute
#define I2C_LOOP_TIMEOUT (9+1)*(F_CPU/SCL_CLOCK)/8
#define BUFFER_POS_INC() (slave_buffer_pos = (slave_buffer_pos+1)%SLAVE_BUFFER_SIZE)
volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];
static volatile uint8_t slave_buffer_pos;
static volatile bool slave_has_register_set = false;
// Wait for an i2c operation to finish
inline static
void i2c_delay(void) {
uint16_t lim = 0;
while(!(TWCR & (1<<TWINT)) && lim < I2C_LOOP_TIMEOUT)
lim++;
// easier way, but will wait slightly longer
// _delay_us(100);
}
// Setup twi to run at 100kHz or 400kHz (see ./i2c.h SCL_CLOCK)
void i2c_master_init(void) {
// no prescaler
TWSR = 0;
// Set TWI clock frequency to SCL_CLOCK. Need TWBR>10.
// Check datasheets for more info.
TWBR = ((F_CPU/SCL_CLOCK)-16)/2;
}
// Start a transaction with the given i2c slave address. The direction of the
// transfer is set with I2C_READ and I2C_WRITE.
// returns: 0 => success
// 1 => error
uint8_t i2c_master_start(uint8_t address) {
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTA);
i2c_delay();
// check that we started successfully
if ( (TW_STATUS != TW_START) && (TW_STATUS != TW_REP_START))
return 1;
TWDR = address;
TWCR = (1<<TWINT) | (1<<TWEN);
i2c_delay();
if ( (TW_STATUS != TW_MT_SLA_ACK) && (TW_STATUS != TW_MR_SLA_ACK) )
return 1; // slave did not acknowledge
else
return 0; // success
}
// Finish the i2c transaction.
void i2c_master_stop(void) {
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
uint16_t lim = 0;
while(!(TWCR & (1<<TWSTO)) && lim < I2C_LOOP_TIMEOUT)
lim++;
}
// Write one byte to the i2c slave.
// returns 0 => slave ACK
// 1 => slave NACK
uint8_t i2c_master_write(uint8_t data) {
TWDR = data;
TWCR = (1<<TWINT) | (1<<TWEN);
i2c_delay();
// check if the slave acknowledged us
return (TW_STATUS == TW_MT_DATA_ACK) ? 0 : 1;
}
// Read one byte from the i2c slave. If ack=1 the slave is acknowledged,
// if ack=0 the acknowledge bit is not set.
// returns: byte read from i2c device
uint8_t i2c_master_read(int ack) {
TWCR = (1<<TWINT) | (1<<TWEN) | (ack<<TWEA);
i2c_delay();
return TWDR;
}
void i2c_reset_state(void) {
TWCR = 0;
}
void i2c_slave_init(uint8_t address) {
TWAR = address << 0; // slave i2c address
// TWEN - twi enable
// TWEA - enable address acknowledgement
// TWINT - twi interrupt flag
// TWIE - enable the twi interrupt
TWCR = (1<<TWIE) | (1<<TWEA) | (1<<TWINT) | (1<<TWEN);
}
ISR(TWI_vect);
ISR(TWI_vect) {
uint8_t ack = 1;
switch(TW_STATUS) {
case TW_SR_SLA_ACK:
// this device has been addressed as a slave receiver
slave_has_register_set = false;
break;
case TW_SR_DATA_ACK:
// this device has received data as a slave receiver
// The first byte that we receive in this transaction sets the location
// of the read/write location of the slaves memory that it exposes over
// i2c. After that, bytes will be written at slave_buffer_pos, incrementing
// slave_buffer_pos after each write.
if(!slave_has_register_set) {
slave_buffer_pos = TWDR;
// don't acknowledge the master if this memory loctaion is out of bounds
if ( slave_buffer_pos >= SLAVE_BUFFER_SIZE ) {
ack = 0;
slave_buffer_pos = 0;
}
slave_has_register_set = true;
} else {
i2c_slave_buffer[slave_buffer_pos] = TWDR;
BUFFER_POS_INC();
}
break;
case TW_ST_SLA_ACK:
case TW_ST_DATA_ACK:
// master has addressed this device as a slave transmitter and is
// requesting data.
TWDR = i2c_slave_buffer[slave_buffer_pos];
BUFFER_POS_INC();
break;
case TW_BUS_ERROR: // something went wrong, reset twi state
TWCR = 0;
default:
break;
}
// Reset everything, so we are ready for the next TWI interrupt
TWCR |= (1<<TWIE) | (1<<TWINT) | (ack<<TWEA) | (1<<TWEN);
}
#endif

46
keyboards/claw44/i2c.h Normal file
View File

@@ -0,0 +1,46 @@
#pragma once
#include <stdint.h>
#ifndef F_CPU
#define F_CPU 16000000UL
#endif
#define I2C_READ 1
#define I2C_WRITE 0
#define I2C_ACK 1
#define I2C_NACK 0
#define SLAVE_BUFFER_SIZE 0x10
// i2c SCL clock frequency 400kHz
#define SCL_CLOCK 400000L
extern volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];
void i2c_master_init(void);
uint8_t i2c_master_start(uint8_t address);
void i2c_master_stop(void);
uint8_t i2c_master_write(uint8_t data);
uint8_t i2c_master_read(int);
void i2c_reset_state(void);
void i2c_slave_init(uint8_t address);
static inline unsigned char i2c_start_read(unsigned char addr) {
return i2c_master_start((addr << 1) | I2C_READ);
}
static inline unsigned char i2c_start_write(unsigned char addr) {
return i2c_master_start((addr << 1) | I2C_WRITE);
}
// from SSD1306 scrips
extern unsigned char i2c_rep_start(unsigned char addr);
extern void i2c_start_wait(unsigned char addr);
extern unsigned char i2c_readAck(void);
extern unsigned char i2c_readNak(void);
extern unsigned char i2c_read(unsigned char ack);
#define i2c_read(ack) (ack) ? i2c_readAck() : i2c_readNak();

View File

@@ -0,0 +1,35 @@
/*
This is the c configuration file for the keymap
Copyright 2012 Jun Wako <wakojun@gmail.com>
Copyright 2015 Jack Humbert
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
//#define USE_MATRIX_I2C
/* Select hand configuration */
#define MASTER_LEFT
// #define MASTER_RIGHT
// #define EE_HANDS
#define SSD1306OLED
#define USE_SERIAL_PD2
#define TAPPING_TERM 200

View File

@@ -0,0 +1,169 @@
#include QMK_KEYBOARD_H
#ifdef PROTOCOL_LUFA
#include "lufa.h"
#include "split_util.h"
#endif
#ifdef SSD1306OLED
#include "ssd1306.h"
#endif
extern keymap_config_t keymap_config;
extern uint8_t is_master;
// Each layer gets a name for readability, which is then used in the keymap matrix below.
// The underscores don't mean anything - you can have a layer called STUFF or any other name.
// Layer names don't all need to be of the same length, obviously, and you can also skip them
// entirely and just use numbers.
enum custom_keycodes {
QWERTY = SAFE_RANGE,
LOWER,
RAISE
};
enum macro_keycodes {
KC_SAMPLEMACRO,
};
#define KC_ KC_TRNS
#define KC_RST RESET
#define KC_L_SPC LT(_LOWER, KC_SPC) // lower
#define KC_R_ENT LT(_RAISE, KC_ENT) // raise
#define KC_G_JA LGUI_T(KC_LANG1) // cmd or win
#define KC_G_EN LGUI_T(KC_LANG2) // cmd or win
#define KC_C_BS LCTL_T(KC_BSPC) // ctrl
#define KC_A_DEL ALT_T(KC_DEL) // alt
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
[_QWERTY] = LAYOUT( \
//,--------+--------+---------+--------+---------+--------. ,--------+---------+--------+---------+--------+--------.
KC_ESC , KC_Q , KC_W , KC_E , KC_R , KC_T , KC_Y , KC_U , KC_I , KC_O , KC_P , KC_MINS,
//|--------+--------+---------+--------+---------+--------| |--------+---------+--------+---------+--------+--------|
KC_TAB , KC_A , KC_S , KC_D , KC_F , KC_G , KC_H , KC_J , KC_K , KC_L , KC_SCLN, KC_QUOT,
//|--------+--------+---------+--------+---------+--------| |--------+---------+--------+---------+--------+--------|
KC_LSFT, KC_Z , KC_X , KC_C , KC_V , KC_B , KC_N , KC_M , KC_COMM, KC_DOT , KC_SLSH, KC_RSFT,
//`--------+--------+---------+--------+---------+--------/ \--------+---------+--------+---------+--------+--------'
KC_A_DEL, KC_G_EN, KC_L_SPC, KC_C_BS, KC_C_BS, KC_R_ENT, KC_G_JA, KC_A_DEL
// `----------+--------+---------+--------' `--------+---------+--------+---------'
),
// \ ^ ! & | @ = + * % -
// ( # $ " ' ~ ← ↓ ↑ → ` )
// { [ ] }
[_RAISE] = LAYOUT( \
//,--------+--------+--------+--------+--------+--------. ,--------+--------+--------+--------+--------+--------.
_______, KC_BSLS, KC_CIRC, KC_EXLM, KC_AMPR, KC_PIPE, KC_AT , KC_EQL , KC_PLUS, KC_ASTR, KC_PERC, KC_MINS,
//|--------+--------+--------+--------+--------+--------| |--------+--------+--------+--------+--------+--------|
KC_LPRN, KC_HASH, KC_DLR , KC_DQT , KC_QUOT, KC_TILD, KC_LEFT, KC_DOWN, KC_UP , KC_RGHT, KC_GRV , KC_RPRN,
//|--------+--------+--------+--------+--------+--------| |--------+--------+--------+--------+--------+--------|
_______, _______, _______, _______, KC_LCBR, KC_LBRC, KC_RBRC, KC_RCBR, _______, _______, _______, _______,
//`--------+--------+--------+--------+--------+--------/ \--------+--------+--------+--------+--------+--------'
_______, _______, _______, _______, _______, _______, _______, RESET
// `--------+--------+--------+--------' `--------+--------+--------+--------'
),
[_LOWER] = LAYOUT( \
//,--------+--------+--------+--------+--------+--------. ,--------+--------+--------+--------+--------+--------.
KC_F1 , KC_F2 , KC_F3 , KC_F4 , KC_F5 , KC_F6 , _______, KC_EQL , KC_PLUS, KC_ASTR, KC_PERC, KC_MINS,
//|--------+--------+--------+--------+--------+--------| |--------+--------+--------+--------+--------+--------|
_______, KC_1 , KC_2 , KC_3 , KC_4 , KC_5 , KC_6 , KC_7 , KC_8 , KC_9 , KC_0 , _______,
//|--------+--------+--------+--------+--------+--------| |--------+--------+--------+--------+--------+--------|
KC_F7 , KC_F8 , KC_F9 , KC_F10 , KC_F11 , KC_F12 , _______, _______, KC_COMM, KC_DOT , KC_SLSH, _______,
//`--------+--------+--------+--------+--------+--------/ \--------+--------+--------+--------+--------+--------'
RESET , _______, _______, _______, _______, _______, _______, _______
// `--------+--------+--------+--------' `--------+--------+--------+--------'
),
};
void matrix_init_user(void) {
//SSD1306 OLED init, make sure to add #define SSD1306OLED in config.h
#ifdef SSD1306OLED
iota_gfx_init(!has_usb()); // turns on the display
#endif
}
//SSD1306 OLED update loop, make sure to add #define SSD1306OLED in config.h
#ifdef SSD1306OLED
// When add source files to SRC in rules.mk, you can use functions.
const char *read_layer_state(void);
const char *read_logo(void);
void set_keylog(uint16_t keycode, keyrecord_t *record);
const char *read_keylog(void);
const char *read_keylogs(void);
// const char *read_mode_icon(bool swap);
// const char *read_host_led_state(void);
// void set_timelog(void);
// const char *read_timelog(void);
void matrix_scan_user(void) {
iota_gfx_task();
}
void matrix_render_user(struct CharacterMatrix *matrix) {
if (is_master) {
// If you want to change the display of OLED, you need to change here
matrix_write_ln(matrix, read_layer_state());
matrix_write_ln(matrix, read_keylog());
matrix_write_ln(matrix, read_keylogs());
//matrix_write_ln(matrix, read_mode_icon(keymap_config.swap_lalt_lgui));
//matrix_write_ln(matrix, read_host_led_state());
//matrix_write_ln(matrix, read_timelog());
} else {
matrix_write(matrix, read_logo());
}
}
void matrix_update(struct CharacterMatrix *dest, const struct CharacterMatrix *source) {
if (memcmp(dest->display, source->display, sizeof(dest->display))) {
memcpy(dest->display, source->display, sizeof(dest->display));
dest->dirty = true;
}
}
void iota_gfx_task_user(void) {
struct CharacterMatrix matrix;
matrix_clear(&matrix);
matrix_render_user(&matrix);
matrix_update(&display, &matrix);
}
#endif//SSD1306OLED
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
if (record->event.pressed) {
#ifdef SSD1306OLED
set_keylog(keycode, record);
#endif
// set_timelog();
}
switch (keycode) {
case QWERTY:
if (record->event.pressed) {
set_single_persistent_default_layer(_QWERTY);
}
return false;
break;
case LOWER:
if (record->event.pressed) {
layer_on(_LOWER);
} else {
layer_off(_LOWER);
}
return false;
break;
case RAISE:
if (record->event.pressed) {
layer_on(_RAISE);
} else {
layer_off(_RAISE);
}
return false;
break;
}
return true;
}

View File

@@ -0,0 +1,36 @@
/*
This is the c configuration file for the keymap
Copyright 2012 Jun Wako <wakojun@gmail.com>
Copyright 2015 Jack Humbert
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
//#define USE_MATRIX_I2C
/* Select hand configuration */
#define MASTER_LEFT
// #define MASTER_RIGHT
// #define EE_HANDS
#define SSD1306OLED
#define USE_SERIAL_PD2
#define TAPPING_TERM 180
#define IGNORE_MOD_TAP_INTERRUPT

View File

@@ -0,0 +1,221 @@
#include QMK_KEYBOARD_H
#ifdef PROTOCOL_LUFA
#include "lufa.h"
#include "split_util.h"
#endif
#ifdef SSD1306OLED
#include "ssd1306.h"
#endif
extern keymap_config_t keymap_config;
extern uint8_t is_master;
// Each layer gets a name for readability, which is then used in the keymap matrix below.
// The underscores don't mean anything - you can have a layer called STUFF or any other name.
// Layer names don't all need to be of the same length, obviously, and you can also skip them
// entirely and just use numbers.
enum custom_keycodes {
QWERTY = SAFE_RANGE,
LOWER,
RAISE
};
enum macro_keycodes {
KC_SAMPLEMACRO,
};
// common
#define KC_ KC_TRNS
#define KC_XXXX KC_NO
#define KC_RST RESET
#define KC_VD KC__VOLDOWN
#define KC_VU KC__VOLUP
// layer
#define KC_L_SPC LT(_LOWER, KC_SPC)
#define KC_R_ENT LT(_RAISE, KC_ENT)
// shift_t
#define KC_S_TAB LSFT_T(KC_TAB)
#define KC_S_ESC LSFT_T(KC_ESC)
#define KC_S_JA LSFT_T(KC_LANG1)
#define KC_S_EN LSFT_T(KC_LANG2)
// cmd_t
#define KC_M_F LCMD_T(KC_F)
#define KC_M_D LCMD_T(KC_D)
#define KC_M_J LCMD_T(KC_J)
#define KC_M_K LCMD_T(KC_K)
// ctl_t
#define KC_C_S LCTL_T(KC_S)
#define KC_C_L LCTL_T(KC_L)
#define KC_C_BS LCTL_T(KC_BSPC)
// alt_t
#define KC_A_D ALT_T(KC_D)
#define KC_A_K ALT_T(KC_K)
#define KC_A_Z ALT_T(KC_Z)
#define KC_A_SL ALT_T(KC_SLSH)
#define KC_A_DEL ALT_T(KC_DEL)
// cmd+shift_t
#define KC_MS_Q SCMD_T(KC_Q)
#define KC_MS_A SCMD_T(KC_A)
#define KC_MS_S SCMD_T(KC_S)
#define KC_MS_SC SCMD_T(KC_SCLN)
#define KC_MS_ESC SCMD_T(KC_ESC)
//
#define KC_MR RCMD(KC_R)
#define KC_MF RCMD(KC_F)
#define KC_MW RCMD(KC_W)
#define KC_MX RCMD(KC_X)
#define KC_MC RCMD(KC_C)
#define KC_MV RCMD(KC_V)
#define KC_MTAB RCMD(KC_TAB)
#define KC_MSF RCMD(RSFT(KC_F))
#define KC_MSR RCMD(RSFT(KC_R))
#define KC_MST RCMD(RSFT(KC_T))
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
// M_ = LCMD_T(
// A_ = ALT_T(
// C_ = LCTL_T(
// MS_ = SMD_T(
// R_ = LT(_RAISE
// L_ = LT(_LOWER
[_QWERTY] = LAYOUT_kc( \
//,----+----+----+----+----+----. ,----+----+----+----+----+----.
ESC , Q , W , E , R , T , Y , U , I , O , P ,MINS,
//|----+----+----+----+----+----| |----+----+----+----+----+----|
S_TAB, A ,C_S , D ,M_F , G , H ,M_J , K ,C_L ,SCLN,S_ESC,
//|----+----+----+----+----+----+ |----+----+----+----+----+----|
, Z , X , C , V , B , N , M ,COMM,DOT ,SLSH, ,
//`----+----+----+----+----+----/ \----+----+----+----+----+----'
A_DEL,S_EN,L_SPC,C_BS, C_BS,R_ENT,S_JA,A_DEL
// `----+----+----+----' `----+----+----+----'
),
// \ ^ ! & | @ = + * % -
// ( # $ " ' ~ ← ↓ ↑ → ` )
// { [ ] }
[_RAISE] = LAYOUT_kc( \
//,----+----+----+----+----+----. ,----+----+----+----+----+----.
,BSLS,CIRC,EXLM,AMPR,PIPE, AT ,EQL ,PLUS,ASTR,PERC,MINS,
//|----+----+----+----+----+----| |----+----+----+----+----+----|
LPRN,HASH,DLR ,DQT ,QUOT,TILD, LEFT,DOWN, UP ,RGHT,GRV ,RPRN,
//|----+----+----+----+----+----| |----+----+----+----+----+----|
, , , ,LCBR,LBRC, RBRC,RCBR, , , , ,
//`----+----+----+----+----+----/ \----+----+----+----+----+----'
, ,BSPC, , , , ,RST
// `----+----+----+----' `----+----+----+----'
),
[_LOWER] = LAYOUT_kc( \
//,----+----+----+----+----+----. ,----+----+----+----+----+----.
, , ,MSF ,MSR ,MST , ,EQL ,PLUS,ASTR,PERC,MINS,
//|----+----+----+----+----+----| |----+----+----+----+----+----|
, 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0 , ,
//|----+----+----+----+----+----| |----+----+----+----+----+----|
, , , , , , , ,COMM,DOT ,SLSH, ,
//`----+----+----+--+-+----+----/ \----+----+----+----+----+----'
RST , , , , ,DEL , ,
// `----+----+----+----' `----+----+----+----'
),
};
void matrix_init_user(void) {
//SSD1306 OLED init, make sure to add #define SSD1306OLED in config.h
#ifdef SSD1306OLED
iota_gfx_init(!has_usb()); // turns on the display
#endif
}
//SSD1306 OLED update loop, make sure to add #define SSD1306OLED in config.h
#ifdef SSD1306OLED
// When add source files to SRC in rules.mk, you can use functions.
const char *read_layer_state(void);
const char *read_logo(void);
void set_keylog(uint16_t keycode, keyrecord_t *record);
const char *read_keylog(void);
const char *read_keylogs(void);
// const char *read_mode_icon(bool swap);
// const char *read_host_led_state(void);
// void set_timelog(void);
// const char *read_timelog(void);
void matrix_scan_user(void) {
iota_gfx_task();
}
void matrix_render_user(struct CharacterMatrix *matrix) {
if (is_master) {
// If you want to change the display of OLED, you need to change here
matrix_write_ln(matrix, read_layer_state());
matrix_write_ln(matrix, read_keylog());
matrix_write_ln(matrix, read_keylogs());
//matrix_write_ln(matrix, read_mode_icon(keymap_config.swap_lalt_lgui));
//matrix_write_ln(matrix, read_host_led_state());
//matrix_write_ln(matrix, read_timelog());
} else {
matrix_write(matrix, read_logo());
}
}
void matrix_update(struct CharacterMatrix *dest, const struct CharacterMatrix *source) {
if (memcmp(dest->display, source->display, sizeof(dest->display))) {
memcpy(dest->display, source->display, sizeof(dest->display));
dest->dirty = true;
}
}
void iota_gfx_task_user(void) {
struct CharacterMatrix matrix;
matrix_clear(&matrix);
matrix_render_user(&matrix);
matrix_update(&display, &matrix);
}
#endif//SSD1306OLED
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
if (record->event.pressed) {
#ifdef SSD1306OLED
set_keylog(keycode, record);
#endif
// set_timelog();
}
switch (keycode) {
case QWERTY:
if (record->event.pressed) {
set_single_persistent_default_layer(_QWERTY);
}
return false;
break;
case LOWER:
if (record->event.pressed) {
layer_on(_LOWER);
} else {
layer_off(_LOWER);
}
return false;
break;
case RAISE:
if (record->event.pressed) {
layer_on(_RAISE);
} else {
layer_off(_RAISE);
}
return false;
break;
}
return true;
}

View File

@@ -0,0 +1,243 @@
// This is the 'classic' fixed-space bitmap font for Adafruit_GFX since 1.0.
// See gfxfont.h for newer custom bitmap font info.
#ifndef FONT5X7_H
#define FONT5X7_H
#ifdef __AVR__
#include <avr/io.h>
#include <avr/pgmspace.h>
#elif defined(ESP8266)
#include <pgmspace.h>
#else
#define PROGMEM
#endif
// Standard ASCII 5x7 font
const unsigned char font[] PROGMEM = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x3E, 0x5B, 0x4F, 0x5B, 0x3E, 0x00,
0x3E, 0x6B, 0x4F, 0x6B, 0x3E, 0x00,
0x1C, 0x3E, 0x7C, 0x3E, 0x1C, 0x00,
0x18, 0x3C, 0x7E, 0x3C, 0x18, 0x00,
0x1C, 0x57, 0x7D, 0x57, 0x1C, 0x00,
0x1C, 0x5E, 0x7F, 0x5E, 0x1C, 0x00,
0x00, 0x18, 0x3C, 0x18, 0x00, 0x00,
0xFF, 0xE7, 0xC3, 0xE7, 0xFF, 0x00,
0x00, 0x18, 0x24, 0x18, 0x00, 0x00,
0xFF, 0xE7, 0xDB, 0xE7, 0xFF, 0x00,
0x30, 0x48, 0x3A, 0x06, 0x0E, 0x00,
0x26, 0x29, 0x79, 0x29, 0x26, 0x00,
0x40, 0x7F, 0x05, 0x05, 0x07, 0x00,
0x40, 0x7F, 0x05, 0x25, 0x3F, 0x00,
0x5A, 0x3C, 0xE7, 0x3C, 0x5A, 0x00,
0x7F, 0x3E, 0x1C, 0x1C, 0x08, 0x00,
0x08, 0x1C, 0x1C, 0x3E, 0x7F, 0x00,
0x14, 0x22, 0x7F, 0x22, 0x14, 0x00,
0x5F, 0x5F, 0x00, 0x5F, 0x5F, 0x00,
0x06, 0x09, 0x7F, 0x01, 0x7F, 0x00,
0x00, 0x66, 0x89, 0x95, 0x6A, 0x00,
0x60, 0x60, 0x60, 0x60, 0x60, 0x00,
0x94, 0xA2, 0xFF, 0xA2, 0x94, 0x00,
0x08, 0x04, 0x7E, 0x04, 0x08, 0x00,
0x10, 0x20, 0x7E, 0x20, 0x10, 0x00,
0x08, 0x08, 0x2A, 0x1C, 0x08, 0x00,
0x08, 0x1C, 0x2A, 0x08, 0x08, 0x00,
0x1E, 0x10, 0x10, 0x10, 0x10, 0x00,
0x0C, 0x1E, 0x0C, 0x1E, 0x0C, 0x00,
0x30, 0x38, 0x3E, 0x38, 0x30, 0x00,
0x06, 0x0E, 0x3E, 0x0E, 0x06, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x5F, 0x00, 0x00, 0x00,
0x00, 0x07, 0x00, 0x07, 0x00, 0x00,
0x14, 0x7F, 0x14, 0x7F, 0x14, 0x00,
0x24, 0x2A, 0x7F, 0x2A, 0x12, 0x00,
0x23, 0x13, 0x08, 0x64, 0x62, 0x00,
0x36, 0x49, 0x56, 0x20, 0x50, 0x00,
0x00, 0x08, 0x07, 0x03, 0x00, 0x00,
0x00, 0x1C, 0x22, 0x41, 0x00, 0x00,
0x00, 0x41, 0x22, 0x1C, 0x00, 0x00,
0x2A, 0x1C, 0x7F, 0x1C, 0x2A, 0x00,
0x08, 0x08, 0x3E, 0x08, 0x08, 0x00,
0x00, 0x80, 0x70, 0x30, 0x00, 0x00,
0x08, 0x08, 0x08, 0x08, 0x08, 0x00,
0x00, 0x00, 0x60, 0x60, 0x00, 0x00,
0x20, 0x10, 0x08, 0x04, 0x02, 0x00,
0x3E, 0x51, 0x49, 0x45, 0x3E, 0x00,
0x00, 0x42, 0x7F, 0x40, 0x00, 0x00,
0x72, 0x49, 0x49, 0x49, 0x46, 0x00,
0x21, 0x41, 0x49, 0x4D, 0x33, 0x00,
0x18, 0x14, 0x12, 0x7F, 0x10, 0x00,
0x27, 0x45, 0x45, 0x45, 0x39, 0x00,
0x3C, 0x4A, 0x49, 0x49, 0x31, 0x00,
0x41, 0x21, 0x11, 0x09, 0x07, 0x00,
0x36, 0x49, 0x49, 0x49, 0x36, 0x00,
0x46, 0x49, 0x49, 0x29, 0x1E, 0x00,
0x00, 0x00, 0x14, 0x00, 0x00, 0x00,
0x00, 0x40, 0x34, 0x00, 0x00, 0x00,
0x00, 0x08, 0x14, 0x22, 0x41, 0x00,
0x14, 0x14, 0x14, 0x14, 0x14, 0x00,
0x00, 0x41, 0x22, 0x14, 0x08, 0x00,
0x02, 0x01, 0x59, 0x09, 0x06, 0x00,
0x3E, 0x41, 0x5D, 0x59, 0x4E, 0x00,
0x7C, 0x12, 0x11, 0x12, 0x7C, 0x00,
0x7F, 0x49, 0x49, 0x49, 0x36, 0x00,
0x3E, 0x41, 0x41, 0x41, 0x22, 0x00,
0x7F, 0x41, 0x41, 0x41, 0x3E, 0x00,
0x7F, 0x49, 0x49, 0x49, 0x41, 0x00,
0x7F, 0x09, 0x09, 0x09, 0x01, 0x00,
0x3E, 0x41, 0x41, 0x51, 0x73, 0x00,
0x7F, 0x08, 0x08, 0x08, 0x7F, 0x00,
0x00, 0x41, 0x7F, 0x41, 0x00, 0x00,
0x20, 0x40, 0x41, 0x3F, 0x01, 0x00,
0x7F, 0x08, 0x14, 0x22, 0x41, 0x00,
0x7F, 0x40, 0x40, 0x40, 0x40, 0x00,
0x7F, 0x02, 0x1C, 0x02, 0x7F, 0x00,
0x7F, 0x04, 0x08, 0x10, 0x7F, 0x00,
0x3E, 0x41, 0x41, 0x41, 0x3E, 0x00,
0x7F, 0x09, 0x09, 0x09, 0x06, 0x00,
0x3E, 0x41, 0x51, 0x21, 0x5E, 0x00,
0x7F, 0x09, 0x19, 0x29, 0x46, 0x00,
0x26, 0x49, 0x49, 0x49, 0x32, 0x00,
0x03, 0x01, 0x7F, 0x01, 0x03, 0x00,
0x3F, 0x40, 0x40, 0x40, 0x3F, 0x00,
0x1F, 0x20, 0x40, 0x20, 0x1F, 0x00,
0x3F, 0x40, 0x38, 0x40, 0x3F, 0x00,
0x63, 0x14, 0x08, 0x14, 0x63, 0x00,
0x03, 0x04, 0x78, 0x04, 0x03, 0x00,
0x61, 0x59, 0x49, 0x4D, 0x43, 0x00,
0x00, 0x7F, 0x41, 0x41, 0x41, 0x00,
0x02, 0x04, 0x08, 0x10, 0x20, 0x00,
0x00, 0x41, 0x41, 0x41, 0x7F, 0x00,
0x04, 0x02, 0x01, 0x02, 0x04, 0x00,
0x40, 0x40, 0x40, 0x40, 0x40, 0x00,
0x00, 0x03, 0x07, 0x08, 0x00, 0x00,
0x20, 0x54, 0x54, 0x78, 0x40, 0x00,
0x7F, 0x28, 0x44, 0x44, 0x38, 0x00,
0x38, 0x44, 0x44, 0x44, 0x28, 0x00,
0x38, 0x44, 0x44, 0x28, 0x7F, 0x00,
0x38, 0x54, 0x54, 0x54, 0x18, 0x00,
0x00, 0x08, 0x7E, 0x09, 0x02, 0x00,
0x18, 0x24, 0x24, 0x1C, 0x78, 0x00,
0x7F, 0x08, 0x04, 0x04, 0x78, 0x00,
0x00, 0x44, 0x7D, 0x40, 0x00, 0x00,
0x20, 0x40, 0x40, 0x3D, 0x00, 0x00,
0x7F, 0x10, 0x28, 0x44, 0x00, 0x00,
0x00, 0x41, 0x7F, 0x40, 0x00, 0x00,
0x7C, 0x04, 0x78, 0x04, 0x78, 0x00,
0x7C, 0x08, 0x04, 0x04, 0x78, 0x00,
0x38, 0x44, 0x44, 0x44, 0x38, 0x00,
0x7C, 0x18, 0x24, 0x24, 0x18, 0x00,
0x18, 0x24, 0x24, 0x18, 0x7C, 0x00,
0x7C, 0x08, 0x04, 0x04, 0x08, 0x00,
0x48, 0x54, 0x54, 0x54, 0x24, 0x00,
0x04, 0x04, 0x3F, 0x44, 0x24, 0x00,
0x3C, 0x40, 0x40, 0x20, 0x7C, 0x00,
0x1C, 0x20, 0x40, 0x20, 0x1C, 0x00,
0x3C, 0x40, 0x30, 0x40, 0x3C, 0x00,
0x44, 0x28, 0x10, 0x28, 0x44, 0x00,
0x4C, 0x90, 0x90, 0x90, 0x7C, 0x00,
0x44, 0x64, 0x54, 0x4C, 0x44, 0x00,
0x00, 0x08, 0x36, 0x41, 0x00, 0x00,
0x00, 0x00, 0x77, 0x00, 0x00, 0x00,
0x00, 0x41, 0x36, 0x08, 0x00, 0x00,
0x02, 0x01, 0x02, 0x04, 0x02, 0x00,
0x3C, 0x26, 0x23, 0x26, 0x3C, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x80, 0x80, 0x80, 0x80, 0x80,
0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0xFC, 0xFC, 0xFC, 0xFC, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
0x80, 0x80, 0x80, 0x00, 0x00, 0x00,
0x00, 0x80, 0x80, 0x80, 0x80, 0x00,
0x00, 0x00, 0x00, 0x00, 0x80, 0x80,
0x80, 0x80, 0x00, 0x00, 0x00, 0x00,
0x00, 0x80, 0xC0, 0xF0, 0xF8, 0xF8,
0xF8, 0xF8, 0xF8, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
0xE0, 0xF8, 0xF8, 0xF8, 0xF8, 0xF8,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xE0, 0xF0, 0xF0, 0xF0, 0xE0, 0xEC,
0xEE, 0xF7, 0xF3, 0x70, 0x20, 0x00,
0x7C, 0x7C, 0x7C, 0x7E, 0x00, 0x7E,
0x7E, 0x7E, 0x7F, 0x7F, 0x7F, 0x00,
0x00, 0x80, 0xC0, 0xE0, 0x7E, 0x5B,
0x4F, 0x5B, 0xFE, 0xC0, 0x00, 0x00,
0xC0, 0x00, 0xDC, 0xD7, 0xDE, 0xDE,
0xDE, 0xD7, 0xDC, 0x00, 0xC0, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0xF8, 0xFC, 0xFE,
0xFF, 0x1F, 0x07, 0x07, 0x07, 0x07,
0x1F, 0x1F, 0x1F, 0x1E, 0x18, 0x00,
0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0x00,
0x00, 0x00, 0x00, 0x9E, 0xDF, 0xDF,
0xCF, 0xC7, 0xE7, 0xE7, 0xE7, 0xFF,
0xFF, 0xFF, 0xFE, 0x00, 0x00, 0x03,
0x3F, 0xFF, 0xFF, 0xFE, 0xC0, 0x00,
0xF0, 0xFF, 0xFF, 0x1F, 0xFF, 0xFF,
0xF0, 0x00, 0xC0, 0xFC, 0xFF, 0xFF,
0x3F, 0x03, 0x00, 0xC0, 0xF0, 0xF8,
0xFE, 0x9F, 0x87, 0x83, 0x80, 0xFF,
0xFF, 0xFF, 0xFF, 0x80, 0x80, 0x00,
0x00, 0xE0, 0xF8, 0xFC, 0xBF, 0x8F,
0x83, 0x81, 0xFF, 0xFF, 0xFF, 0xFF,
0x80, 0x80, 0x80, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x0F, 0x1F, 0x3F, 0x7F, 0x7F, 0x7F,
0x7F, 0x7F, 0x3F, 0x1E, 0x0C, 0x00,
0x1F, 0x1F, 0x1F, 0x3F, 0x00, 0x3F,
0x3F, 0x3F, 0x7F, 0x7F, 0x7F, 0x00,
0x30, 0x7B, 0x7F, 0x78, 0x30, 0x20,
0x20, 0x30, 0x78, 0x7F, 0x3B, 0x00,
0x03, 0x00, 0x0F, 0x7F, 0x0F, 0x0F,
0x0F, 0x7F, 0x0F, 0x00, 0x03, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x07, 0x1F, 0x3F,
0x7F, 0x7C, 0x78, 0x70, 0x70, 0x78,
0x7E, 0x3E, 0x3E, 0x0E, 0x06, 0x00,
0x00, 0x7F, 0x7F, 0x7F, 0x7F, 0x00,
0x00, 0x00, 0x1F, 0x3F, 0x7F, 0x7F,
0x79, 0x71, 0x70, 0x30, 0x38, 0x3F,
0x7F, 0x7F, 0x7F, 0x60, 0x00, 0x00,
0x00, 0x01, 0x1F, 0x7F, 0x7F, 0x7E,
0x7F, 0x1F, 0x01, 0x00, 0x01, 0x3F,
0x7F, 0x7E, 0x7F, 0x7F, 0x0F, 0x01,
0x00, 0x00, 0x00, 0x03, 0x03, 0x03,
0x03, 0x03, 0x03, 0x03, 0x03, 0x7F,
0x7F, 0x7F, 0x7F, 0x03, 0x03, 0x00,
0x00, 0x03, 0x03, 0x03, 0x03, 0x03,
0x03, 0x03, 0x7F, 0x7F, 0x7F, 0x7F,
0x07, 0x03, 0x03, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
#endif // FONT5X7_H

View File

@@ -0,0 +1,15 @@
#include <stdio.h>
#include "claw44.h"
char host_led_state_str[24];
const char *read_host_led_state(void)
{
uint8_t leds = host_keyboard_leds();
snprintf(host_led_state_str, sizeof(host_led_state_str), "NL:%s CL:%s SL:%s",
(leds & (1 << USB_LED_NUM_LOCK)) ? "on" : "- ",
(leds & (1 << USB_LED_CAPS_LOCK)) ? "on" : "- ",
(leds & (1 << USB_LED_SCROLL_LOCK)) ? "on" : "- ");
return host_led_state_str;
}

View File

@@ -0,0 +1,45 @@
#include <stdio.h>
#include "claw44.h"
char keylog_str[24] = {};
char keylogs_str[21] = {};
int keylogs_str_idx = 0;
const char code_to_name[60] = {
' ', ' ', ' ', ' ', 'a', 'b', 'c', 'd', 'e', 'f',
'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p',
'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z',
'1', '2', '3', '4', '5', '6', '7', '8', '9', '0',
'R', 'E', 'B', 'T', ' ', ' ', ' ', ' ', ' ', ' ',
' ', ';', '\'', ' ', ',', '.', '/', ' ', ' ', ' '};
void set_keylog(uint16_t keycode, keyrecord_t *record) {
char name = ' ';
if (keycode < 60) {
name = code_to_name[keycode];
}
// update keylog
snprintf(keylog_str, sizeof(keylog_str), "%dx%d, k%2d : %c",
record->event.key.row, record->event.key.col,
keycode, name);
// update keylogs
if (keylogs_str_idx == sizeof(keylogs_str) - 1) {
keylogs_str_idx = 0;
for (int i = 0; i < sizeof(keylogs_str) - 1; i++) {
keylogs_str[i] = ' ';
}
}
keylogs_str[keylogs_str_idx] = name;
keylogs_str_idx++;
}
const char *read_keylog(void) {
return keylog_str;
}
const char *read_keylogs(void) {
return keylogs_str;
}

View File

@@ -0,0 +1,35 @@
#include QMK_KEYBOARD_H
#include <stdio.h>
#include "claw44.h"
#define L_BASE 0
#define L_LOWER (1<<_LOWER)
#define L_RAISE (1<<_RAISE)
#define L_ADJUST (1<<_ADJUST)
#define L_ADJUST_TRI (L_ADJUST|L_RAISE|L_LOWER)
char layer_state_str[24];
const char *read_layer_state(void) {
switch (layer_state)
{
case L_BASE:
snprintf(layer_state_str, sizeof(layer_state_str), "Layer: Default");
break;
case L_RAISE:
snprintf(layer_state_str, sizeof(layer_state_str), "Layer: Raise");
break;
case L_LOWER:
snprintf(layer_state_str, sizeof(layer_state_str), "Layer: Lower");
break;
case L_ADJUST:
case L_ADJUST_TRI:
snprintf(layer_state_str, sizeof(layer_state_str), "Layer: Adjust");
break;
default:
snprintf(layer_state_str, sizeof(layer_state_str), "Layer: Undef-%ld", layer_state);
}
return layer_state_str;
}

View File

@@ -0,0 +1,11 @@
#include "claw44.h"
const char *read_logo(void) {
static char logo[] = {
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93, 0x94,
0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, 0xb0, 0xb1, 0xb2, 0xb3, 0xb4,
0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, 0xd0, 0xd1, 0xd2, 0xd3, 0xd4,
0};
return logo;
}

View File

@@ -0,0 +1,15 @@
#include <stdio.h>
#include "claw44.h"
char mode_icon[24];
const char *read_mode_icon(bool swap) {
static char logo[][2][3] = {{{0x95, 0x96, 0}, {0xb5, 0xb6, 0}}, {{0x97, 0x98, 0}, {0xb7, 0xb8, 0}}};
if (swap == false) {
snprintf(mode_icon, sizeof(mode_icon), "%s\n%s", logo[0][0], logo[0][1]);
} else {
snprintf(mode_icon, sizeof(mode_icon), "%s\n%s", logo[1][0], logo[1][1]);
}
return mode_icon;
}

View File

@@ -0,0 +1,15 @@
#ifdef RGBLIGHT_ENABLE
#include QMK_KEYBOARD_H
#include <stdio.h>
extern rgblight_config_t rgblight_config;
char rbf_info_str[24];
const char *read_rgb_info(void) {
snprintf(rbf_info_str, sizeof(rbf_info_str), "%s %2d h%3d s%3d v%3d",
rgblight_config.enable ? "on" : "- ", rgblight_config.mode,
rgblight_config.hue, rgblight_config.sat, rgblight_config.val);
return rbf_info_str;
}
#endif

View File

@@ -0,0 +1,16 @@
#include <stdio.h>
#include "claw44.h"
char timelog_str[24] = {};
int last_time = 0;
int elapsed_time = 0;
void set_timelog(void) {
elapsed_time = timer_elapsed(last_time);
last_time = timer_read();
snprintf(timelog_str, sizeof(timelog_str), "lt:%5d, et:%5d", last_time, elapsed_time);
}
const char *read_timelog(void) {
return timelog_str;
}

View File

@@ -0,0 +1,15 @@
# Claw44
![Claw44](https://i.imgur.com/5a8iogl.jpg)
A split keyboard with 3x6 vertically staggered keys and 4 thumb keys.
Keyboard Maintainer: [@yfuku_](https://twitter.com/yfuku_)
Hardware Supported: Claw44 PCB, ProMicro
Hardware Availability: https://yfuku.booth.pm/
Make example for this keyboard (after setting up your build environment):
make claw44:default
See the [build environment setup](https://docs.qmk.fm/#/getting_started_build_tools) and the [make instructions](https://docs.qmk.fm/#/getting_started_make_guide) for more information. Brand new to QMK? Start with our [Complete Newbs Guide](https://docs.qmk.fm/#/newbs).

View File

@@ -0,0 +1,76 @@
/*
Copyright 2012 Jun Wako <wakojun@gmail.com>
Copyright 2015 Jack Humbert
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
/* USB Device descriptor parameter */
#define VENDOR_ID 0xFEED
#define PRODUCT_ID 0x3060
#define DEVICE_VER 0x0001
#define MANUFACTURER yfuku
#define PRODUCT claw44
#define DESCRIPTION A split keyboard with 3x6 vertically staggered keys and 4 thumb keys
/* key matrix size */
// Rows are doubled-up
#define MATRIX_ROWS 8
#define MATRIX_COLS 7
#define MATRIX_ROW_PINS { D4, C6, D7, E6 }
// wiring of each half
#define MATRIX_COL_PINS { F4, F5, F6, F7, B1, B3, B2 }
// #define MATRIX_COL_PINS { B2, B3, B1, F7, F6, F5, F4 } //uncomment this line and comment line above if you need to reverse left-to-right key order
/* define if matrix has ghost */
//#define MATRIX_HAS_GHOST
/* number of backlight levels */
// #define BACKLIGHT_LEVELS 3
/* Set 0 if debouncing isn't needed */
#define DEBOUNCING_DELAY 5
/* Mechanical locking support. Use KC_LCAP, KC_LNUM or KC_LSCR instead in keymap */
//#define LOCKING_SUPPORT_ENABLE
/* Locking resynchronize hack */
//#define LOCKING_RESYNC_ENABLE
/* ws2812 RGB LED */
/*
#define RGB_DI_PIN D3
#define RGBLED_NUM 12 // Number of LEDs
*/
/*
* Feature disable options
* These options are also useful to firmware size reduction.
*/
/* disable debug print */
// #define NO_DEBUG
/* disable print */
// #define NO_PRINT
/* disable action features */
//#define NO_ACTION_LAYER
//#define NO_ACTION_TAPPING
//#define NO_ACTION_ONESHOT
//#define NO_ACTION_MACRO
//#define NO_ACTION_FUNCTION

View File

@@ -0,0 +1,357 @@
/*
Copyright 2012 Jun Wako <wakojun@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* scan matrix
*/
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#include "split_util.h"
#include "pro_micro.h"
#ifdef USE_MATRIX_I2C
# include "i2c.h"
#else // USE_SERIAL
# include "split_scomm.h"
#endif
#ifndef DEBOUNCE
# define DEBOUNCE 5
#endif
#define ERROR_DISCONNECT_COUNT 5
static uint8_t debouncing = DEBOUNCE;
static const int ROWS_PER_HAND = MATRIX_ROWS/2;
static uint8_t error_count = 0;
uint8_t is_master = 0 ;
static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
static matrix_row_t matrix_debouncing[MATRIX_ROWS];
static matrix_row_t read_cols(void);
static void init_cols(void);
static void unselect_rows(void);
static void select_row(uint8_t row);
static uint8_t matrix_master_scan(void);
__attribute__ ((weak))
void matrix_init_kb(void) {
matrix_init_user();
}
__attribute__ ((weak))
void matrix_scan_kb(void) {
matrix_scan_user();
}
__attribute__ ((weak))
void matrix_init_user(void) {
}
__attribute__ ((weak))
void matrix_scan_user(void) {
}
inline
uint8_t matrix_rows(void)
{
return MATRIX_ROWS;
}
inline
uint8_t matrix_cols(void)
{
return MATRIX_COLS;
}
void matrix_init(void)
{
debug_enable = true;
debug_matrix = true;
debug_mouse = true;
// initialize row and col
unselect_rows();
init_cols();
TX_RX_LED_INIT;
TXLED0;
RXLED0;
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
matrix[i] = 0;
matrix_debouncing[i] = 0;
}
is_master = has_usb();
matrix_init_quantum();
}
uint8_t _matrix_scan(void)
{
// Right hand is stored after the left in the matirx so, we need to offset it
int offset = isLeftHand ? 0 : (ROWS_PER_HAND);
for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
select_row(i);
_delay_us(30); // without this wait read unstable value.
matrix_row_t cols = read_cols();
if (matrix_debouncing[i+offset] != cols) {
matrix_debouncing[i+offset] = cols;
debouncing = DEBOUNCE;
}
unselect_rows();
}
if (debouncing) {
if (--debouncing) {
_delay_ms(1);
} else {
for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
matrix[i+offset] = matrix_debouncing[i+offset];
}
}
}
return 1;
}
#ifdef USE_MATRIX_I2C
// Get rows from other half over i2c
int i2c_transaction(void) {
int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
int err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
if (err) goto i2c_error;
// start of matrix stored at 0x00
err = i2c_master_write(0x00);
if (err) goto i2c_error;
// Start read
err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ);
if (err) goto i2c_error;
if (!err) {
int i;
for (i = 0; i < ROWS_PER_HAND-1; ++i) {
matrix[slaveOffset+i] = i2c_master_read(I2C_ACK);
}
matrix[slaveOffset+i] = i2c_master_read(I2C_NACK);
i2c_master_stop();
} else {
i2c_error: // the cable is disconnceted, or something else went wrong
i2c_reset_state();
return err;
}
return 0;
}
#else // USE_SERIAL
int serial_transaction(int master_changed) {
int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
#ifdef SERIAL_USE_MULTI_TRANSACTION
int ret=serial_update_buffers(master_changed);
#else
int ret=serial_update_buffers();
#endif
if (ret ) {
if(ret==2) RXLED1;
return 1;
}
RXLED0;
memcpy(&matrix[slaveOffset],
(void *)serial_slave_buffer, SERIAL_SLAVE_BUFFER_LENGTH);
return 0;
}
#endif
uint8_t matrix_scan(void)
{
if (is_master) {
matrix_master_scan();
}else{
matrix_slave_scan();
int offset = (isLeftHand) ? ROWS_PER_HAND : 0;
memcpy(&matrix[offset],
(void *)serial_master_buffer, SERIAL_MASTER_BUFFER_LENGTH);
matrix_scan_quantum();
}
return 1;
}
uint8_t matrix_master_scan(void) {
int ret = _matrix_scan();
int mchanged = 1;
int offset = (isLeftHand) ? 0 : ROWS_PER_HAND;
#ifdef USE_MATRIX_I2C
// for (int i = 0; i < ROWS_PER_HAND; ++i) {
/* i2c_slave_buffer[i] = matrix[offset+i]; */
// i2c_slave_buffer[i] = matrix[offset+i];
// }
#else // USE_SERIAL
#ifdef SERIAL_USE_MULTI_TRANSACTION
mchanged = memcmp((void *)serial_master_buffer,
&matrix[offset], SERIAL_MASTER_BUFFER_LENGTH);
#endif
memcpy((void *)serial_master_buffer,
&matrix[offset], SERIAL_MASTER_BUFFER_LENGTH);
#endif
#ifdef USE_MATRIX_I2C
if( i2c_transaction() ) {
#else // USE_SERIAL
if( serial_transaction(mchanged) ) {
#endif
// turn on the indicator led when halves are disconnected
TXLED1;
error_count++;
if (error_count > ERROR_DISCONNECT_COUNT) {
// reset other half if disconnected
int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
for (int i = 0; i < ROWS_PER_HAND; ++i) {
matrix[slaveOffset+i] = 0;
}
}
} else {
// turn off the indicator led on no error
TXLED0;
error_count = 0;
}
matrix_scan_quantum();
return ret;
}
void matrix_slave_scan(void) {
_matrix_scan();
int offset = (isLeftHand) ? 0 : ROWS_PER_HAND;
#ifdef USE_MATRIX_I2C
for (int i = 0; i < ROWS_PER_HAND; ++i) {
/* i2c_slave_buffer[i] = matrix[offset+i]; */
i2c_slave_buffer[i] = matrix[offset+i];
}
#else // USE_SERIAL
#ifdef SERIAL_USE_MULTI_TRANSACTION
int change = 0;
#endif
for (int i = 0; i < ROWS_PER_HAND; ++i) {
#ifdef SERIAL_USE_MULTI_TRANSACTION
if( serial_slave_buffer[i] != matrix[offset+i] )
change = 1;
#endif
serial_slave_buffer[i] = matrix[offset+i];
}
#ifdef SERIAL_USE_MULTI_TRANSACTION
slave_buffer_change_count += change;
#endif
#endif
}
bool matrix_is_modified(void)
{
if (debouncing) return false;
return true;
}
inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
return (matrix[row] & ((matrix_row_t)1<<col));
}
inline
matrix_row_t matrix_get_row(uint8_t row)
{
return matrix[row];
}
void matrix_print(void)
{
print("\nr/c 0123456789ABCDEF\n");
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
phex(row); print(": ");
pbin_reverse16(matrix_get_row(row));
print("\n");
}
}
uint8_t matrix_key_count(void)
{
uint8_t count = 0;
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
count += bitpop16(matrix[i]);
}
return count;
}
static void init_cols(void)
{
for(int x = 0; x < MATRIX_COLS; x++) {
_SFR_IO8((col_pins[x] >> 4) + 1) &= ~_BV(col_pins[x] & 0xF);
_SFR_IO8((col_pins[x] >> 4) + 2) |= _BV(col_pins[x] & 0xF);
}
}
static matrix_row_t read_cols(void)
{
matrix_row_t result = 0;
for(int x = 0; x < MATRIX_COLS; x++) {
result |= (_SFR_IO8(col_pins[x] >> 4) & _BV(col_pins[x] & 0xF)) ? 0 : (1 << x);
}
return result;
}
static void unselect_rows(void)
{
for(int x = 0; x < ROWS_PER_HAND; x++) {
_SFR_IO8((row_pins[x] >> 4) + 1) &= ~_BV(row_pins[x] & 0xF);
_SFR_IO8((row_pins[x] >> 4) + 2) |= _BV(row_pins[x] & 0xF);
}
}
static void select_row(uint8_t row)
{
_SFR_IO8((row_pins[row] >> 4) + 1) |= _BV(row_pins[row] & 0xF);
_SFR_IO8((row_pins[row] >> 4) + 2) &= ~_BV(row_pins[row] & 0xF);
}

View File

@@ -0,0 +1,8 @@
#include "claw44.h"
#ifdef SSD1306OLED
void led_set_kb(uint8_t usb_led) {
// put your keyboard LED indicator (ex: Caps Lock LED) toggling code here
//led_set_user(usb_led);
}
#endif

View File

@@ -0,0 +1,57 @@
#pragma once
#include "../claw44.h"
//void promicro_bootloader_jmp(bool program);
#include "quantum.h"
#ifdef RGBLIGHT_ENABLE
//rgb led driver
#include "ws2812.h"
#endif
#ifdef USE_I2C
#include <stddef.h>
#ifdef __AVR__
#include <avr/io.h>
#include <avr/interrupt.h>
#endif
#endif
//void promicro_bootloader_jmp(bool program);
#define LAYOUT( \
L00, L01, L02, L03, L04, L05, R00, R01, R02, R03, R04, R05, \
L10, L11, L12, L13, L14, L15, R10, R11, R12, R13, R14, R15, \
L20, L21, L22, L23, L24, L25, R20, R21, R22, R23, R24, R25, \
L30, L31, L32, L33, R30, R31, R32, R33 \
) \
{ \
{ L00, L01, L02, L03, L04, L05 }, \
{ L10, L11, L12, L13, L14, L15 }, \
{ L20, L21, L22, L23, L24, L25 }, \
{ KC_NO, KC_NO, L30, L31, L32, L33 }, \
{ R05, R04, R03, R02, R01, R00 }, \
{ R15, R14, R13, R12, R11, R10 }, \
{ R25, R24, R23, R22, R21, R20 }, \
{ KC_NO, KC_NO, R33, R32, R31, R30 } \
}
#define LAYOUT_kc( \
L00, L01, L02, L03, L04, L05, R00, R01, R02, R03, R04, R05, \
L10, L11, L12, L13, L14, L15, R10, R11, R12, R13, R14, R15, \
L20, L21, L22, L23, L24, L25, R20, R21, R22, R23, R24, R25, \
L30, L31, L32, L33, R30, R31, R32, R33 \
) \
LAYOUT( \
KC_##L00, KC_##L01, KC_##L02, KC_##L03, KC_##L04, KC_##L05, KC_##R00, KC_##R01, KC_##R02, KC_##R03, KC_##R04, KC_##R05, \
KC_##L10, KC_##L11, KC_##L12, KC_##L13, KC_##L14, KC_##L15, KC_##R10, KC_##R11, KC_##R12, KC_##R13, KC_##R14, KC_##R15, \
KC_##L20, KC_##L21, KC_##L22, KC_##L23, KC_##L24, KC_##L25, KC_##R20, KC_##R21, KC_##R22, KC_##R23, KC_##R24, KC_##R25, \
KC_##L30, KC_##L31, KC_##L32, KC_##L33, KC_##R30, KC_##R31, KC_##R32, KC_##R33 \
)
enum layer_number {
_QWERTY = 0,
_LOWER,
_RAISE,
_ADJUST,
};

View File

@@ -0,0 +1,31 @@
SRC += rev1/matrix.c
SRC += rev1/split_util.c
SRC += rev1/split_scomm.c
# Build Options
BOOTMAGIC_ENABLE = no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = no # Mouse keys(+4700)
EXTRAKEY_ENABLE = no # Audio control and System control(+450)
CONSOLE_ENABLE = no # Console for debug(+400)
COMMAND_ENABLE = no # Commands for debug and configuration
NKRO_ENABLE = no # Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE = no # Enable keyboard backlight functionality
MIDI_ENABLE = no # MIDI controls
AUDIO_ENABLE = no # Audio output on port C6
UNICODE_ENABLE = no # Unicode
BLUETOOTH_ENABLE = no # Enable Bluetooth with the Adafruit EZ-Key HID
RGBLIGHT_ENABLE = no # Enable WS2812 RGB underlight.
SWAP_HANDS_ENABLE = no # Enable one-hand typing
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE = no # Breathing sleep LED during USB suspend
# If you want to change the display of OLED, you need to change here
SRC += ./lib/glcdfont.c \
./lib/layer_state_reader.c \
./lib/logo_reader.c \
./lib/keylogger.c \
# ./lib/rgb_state_reader.c \
# ./lib/mode_icon_reader.c \
# ./lib/host_led_state_reader.c \
# ./lib/timelogger.c \

View File

@@ -0,0 +1,4 @@
#ifndef SOFT_SERIAL_PIN
#define SOFT_SERIAL_PIN D2
#define SERIAL_USE_MULTI_TRANSACTION
#endif

View File

@@ -0,0 +1,91 @@
#ifdef USE_SERIAL
#ifdef SERIAL_USE_MULTI_TRANSACTION
/* --- USE flexible API (using multi-type transaction function) --- */
#include <stdbool.h>
#include <stdint.h>
#include <stddef.h>
#include <split_scomm.h>
#include "serial.h"
#ifdef CONSOLE_ENABLE
#include <print.h>
#endif
uint8_t volatile serial_slave_buffer[SERIAL_SLAVE_BUFFER_LENGTH] = {0};
uint8_t volatile serial_master_buffer[SERIAL_MASTER_BUFFER_LENGTH] = {0};
uint8_t volatile status_com = 0;
uint8_t volatile status1 = 0;
uint8_t slave_buffer_change_count = 0;
uint8_t s_change_old = 0xff;
uint8_t s_change_new = 0xff;
SSTD_t transactions[] = {
#define GET_SLAVE_STATUS 0
/* master buffer not changed, only recive slave_buffer_change_count */
{ (uint8_t *)&status_com,
0, NULL,
sizeof(slave_buffer_change_count), &slave_buffer_change_count,
},
#define PUT_MASTER_GET_SLAVE_STATUS 1
/* master buffer changed need send, and recive slave_buffer_change_count */
{ (uint8_t *)&status_com,
sizeof(serial_master_buffer), (uint8_t *)serial_master_buffer,
sizeof(slave_buffer_change_count), &slave_buffer_change_count,
},
#define GET_SLAVE_BUFFER 2
/* recive serial_slave_buffer */
{ (uint8_t *)&status1,
0, NULL,
sizeof(serial_slave_buffer), (uint8_t *)serial_slave_buffer
}
};
void serial_master_init(void)
{
soft_serial_initiator_init(transactions, TID_LIMIT(transactions));
}
void serial_slave_init(void)
{
soft_serial_target_init(transactions, TID_LIMIT(transactions));
}
// 0 => no error
// 1 => slave did not respond
// 2 => checksum error
int serial_update_buffers(int master_update)
{
int status, smatstatus;
static int need_retry = 0;
if( s_change_old != s_change_new ) {
smatstatus = soft_serial_transaction(GET_SLAVE_BUFFER);
if( smatstatus == TRANSACTION_END ) {
s_change_old = s_change_new;
#ifdef CONSOLE_ENABLE
uprintf("slave matrix = %b %b %b %b\n",
serial_slave_buffer[0], serial_slave_buffer[1],
serial_slave_buffer[2], serial_slave_buffer[3]);
#endif
}
} else {
// serial_slave_buffer dosen't change
smatstatus = TRANSACTION_END; // dummy status
}
if( !master_update && !need_retry) {
status = soft_serial_transaction(GET_SLAVE_STATUS);
} else {
status = soft_serial_transaction(PUT_MASTER_GET_SLAVE_STATUS);
}
if( status == TRANSACTION_END ) {
s_change_new = slave_buffer_change_count;
need_retry = 0;
} else {
need_retry = 1;
}
return smatstatus;
}
#endif // SERIAL_USE_MULTI_TRANSACTION
#endif /* USE_SERIAL */

View File

@@ -0,0 +1,24 @@
#ifndef SPLIT_COMM_H
#define SPLIT_COMM_H
#ifndef SERIAL_USE_MULTI_TRANSACTION
/* --- USE Simple API (OLD API, compatible with let's split serial.c) --- */
#include "serial.h"
#else
/* --- USE flexible API (using multi-type transaction function) --- */
// Buffers for master - slave communication
#define SERIAL_SLAVE_BUFFER_LENGTH MATRIX_ROWS/2
#define SERIAL_MASTER_BUFFER_LENGTH MATRIX_ROWS/2
extern volatile uint8_t serial_slave_buffer[SERIAL_SLAVE_BUFFER_LENGTH];
extern volatile uint8_t serial_master_buffer[SERIAL_MASTER_BUFFER_LENGTH];
extern uint8_t slave_buffer_change_count;
void serial_master_init(void);
void serial_slave_init(void);
int serial_update_buffers(int master_changed);
#endif
#endif /* SPLIT_COMM_H */

View File

@@ -0,0 +1,70 @@
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/power.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <avr/eeprom.h>
#include "split_util.h"
#include "matrix.h"
#include "keyboard.h"
#ifdef USE_MATRIX_I2C
# include "i2c.h"
#else
# include "split_scomm.h"
#endif
volatile bool isLeftHand = true;
static void setup_handedness(void) {
#ifdef EE_HANDS
isLeftHand = eeprom_read_byte(EECONFIG_HANDEDNESS);
#else
// I2C_MASTER_RIGHT is deprecated, use MASTER_RIGHT instead, since this works for both serial and i2c
#if defined(I2C_MASTER_RIGHT) || defined(MASTER_RIGHT)
isLeftHand = !has_usb();
#else
isLeftHand = has_usb();
#endif
#endif
}
static void keyboard_master_setup(void) {
#ifdef USE_MATRIX_I2C
i2c_master_init();
#else
serial_master_init();
#endif
}
static void keyboard_slave_setup(void) {
#ifdef USE_MATRIX_I2C
i2c_slave_init(SLAVE_I2C_ADDRESS);
#else
serial_slave_init();
#endif
}
bool has_usb(void) {
USBCON |= (1 << OTGPADE); //enables VBUS pad
_delay_us(5);
return (USBSTA & (1<<VBUS)); //checks state of VBUS
}
void split_keyboard_setup(void) {
setup_handedness();
if (has_usb()) {
keyboard_master_setup();
} else {
keyboard_slave_setup();
}
sei();
}
// this code runs before the usb and keyboard is initialized
void matrix_setup(void) {
split_keyboard_setup();
}

View File

@@ -0,0 +1,19 @@
#ifndef SPLIT_KEYBOARD_UTIL_H
#define SPLIT_KEYBOARD_UTIL_H
#include <stdbool.h>
#include "eeconfig.h"
#define SLAVE_I2C_ADDRESS 0x32
extern volatile bool isLeftHand;
// slave version of matix scan, defined in matrix.c
void matrix_slave_scan(void);
void split_keyboard_setup(void);
bool has_usb(void);
void matrix_master_OLED_init (void);
#endif

74
keyboards/claw44/rules.mk Normal file
View File

@@ -0,0 +1,74 @@
SRC += i2c.c
SRC += serial.c
SRC += ssd1306.c
# if firmware size over limit, try this option
# CFLAGS += -flto
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Bootloader
# This definition is optional, and if your keyboard supports multiple bootloaders of
# different sizes, comment this out, and the correct address will be loaded
# automatically (+60). See bootloader.mk for all options.
BOOTLOADER = caterina
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Build Options
# change to "no" to disable the options, or define them in the Makefile in
# the appropriate keymap folder that will get included automatically
#
BOOTMAGIC_ENABLE = no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = no # Mouse keys(+4700)
EXTRAKEY_ENABLE = no # Audio control and System control(+450)
CONSOLE_ENABLE = no # Console for debug(+400)
COMMAND_ENABLE = no # Commands for debug and configuration
NKRO_ENABLE = no # Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE = no # Enable keyboard backlight functionality
MIDI_ENABLE = no # MIDI controls
AUDIO_ENABLE = no # Audio output on port C6
UNICODE_ENABLE = no # Unicode
BLUETOOTH_ENABLE = no # Enable Bluetooth with the Adafruit EZ-Key HID
RGBLIGHT_ENABLE = no # Enable WS2812 RGB underlight.
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE = no # Breathing sleep LED during USB suspend
CUSTOM_MATRIX = yes
DEFAULT_FOLDER = claw44/rev1

590
keyboards/claw44/serial.c Normal file
View File

@@ -0,0 +1,590 @@
/*
* WARNING: be careful changing this code, it is very timing dependent
*
* 2018-10-28 checked
* avr-gcc 4.9.2
* avr-gcc 5.4.0
* avr-gcc 7.3.0
*/
#ifndef F_CPU
#define F_CPU 16000000
#endif
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <stddef.h>
#include <stdbool.h>
#include "serial.h"
//#include <pro_micro.h>
#ifdef SOFT_SERIAL_PIN
#ifdef __AVR_ATmega32U4__
// if using ATmega32U4 I2C, can not use PD0 and PD1 in soft serial.
#ifdef USE_I2C
#if SOFT_SERIAL_PIN == D0 || SOFT_SERIAL_PIN == D1
#error Using ATmega32U4 I2C, so can not use PD0, PD1
#endif
#endif
#if SOFT_SERIAL_PIN >= D0 && SOFT_SERIAL_PIN <= D3
#define SERIAL_PIN_DDR DDRD
#define SERIAL_PIN_PORT PORTD
#define SERIAL_PIN_INPUT PIND
#if SOFT_SERIAL_PIN == D0
#define SERIAL_PIN_MASK _BV(PD0)
#define EIMSK_BIT _BV(INT0)
#define EICRx_BIT (~(_BV(ISC00) | _BV(ISC01)))
#define SERIAL_PIN_INTERRUPT INT0_vect
#elif SOFT_SERIAL_PIN == D1
#define SERIAL_PIN_MASK _BV(PD1)
#define EIMSK_BIT _BV(INT1)
#define EICRx_BIT (~(_BV(ISC10) | _BV(ISC11)))
#define SERIAL_PIN_INTERRUPT INT1_vect
#elif SOFT_SERIAL_PIN == D2
#define SERIAL_PIN_MASK _BV(PD2)
#define EIMSK_BIT _BV(INT2)
#define EICRx_BIT (~(_BV(ISC20) | _BV(ISC21)))
#define SERIAL_PIN_INTERRUPT INT2_vect
#elif SOFT_SERIAL_PIN == D3
#define SERIAL_PIN_MASK _BV(PD3)
#define EIMSK_BIT _BV(INT3)
#define EICRx_BIT (~(_BV(ISC30) | _BV(ISC31)))
#define SERIAL_PIN_INTERRUPT INT3_vect
#endif
#elif SOFT_SERIAL_PIN == E6
#define SERIAL_PIN_DDR DDRE
#define SERIAL_PIN_PORT PORTE
#define SERIAL_PIN_INPUT PINE
#define SERIAL_PIN_MASK _BV(PE6)
#define EIMSK_BIT _BV(INT6)
#define EICRx_BIT (~(_BV(ISC60) | _BV(ISC61)))
#define SERIAL_PIN_INTERRUPT INT6_vect
#else
#error invalid SOFT_SERIAL_PIN value
#endif
#else
#error serial.c now support ATmega32U4 only
#endif
//////////////// for backward compatibility ////////////////////////////////
#ifndef SERIAL_USE_MULTI_TRANSACTION
/* --- USE Simple API (OLD API, compatible with let's split serial.c) */
#if SERIAL_SLAVE_BUFFER_LENGTH > 0
uint8_t volatile serial_slave_buffer[SERIAL_SLAVE_BUFFER_LENGTH] = {0};
#endif
#if SERIAL_MASTER_BUFFER_LENGTH > 0
uint8_t volatile serial_master_buffer[SERIAL_MASTER_BUFFER_LENGTH] = {0};
#endif
uint8_t volatile status0 = 0;
SSTD_t transactions[] = {
{ (uint8_t *)&status0,
#if SERIAL_MASTER_BUFFER_LENGTH > 0
sizeof(serial_master_buffer), (uint8_t *)serial_master_buffer,
#else
0, (uint8_t *)NULL,
#endif
#if SERIAL_SLAVE_BUFFER_LENGTH > 0
sizeof(serial_slave_buffer), (uint8_t *)serial_slave_buffer
#else
0, (uint8_t *)NULL,
#endif
}
};
void serial_master_init(void)
{ soft_serial_initiator_init(transactions, TID_LIMIT(transactions)); }
void serial_slave_init(void)
{ soft_serial_target_init(transactions, TID_LIMIT(transactions)); }
// 0 => no error
// 1 => slave did not respond
// 2 => checksum error
int serial_update_buffers()
{
int result;
result = soft_serial_transaction();
return result;
}
#endif // end of Simple API (OLD API, compatible with let's split serial.c)
////////////////////////////////////////////////////////////////////////////
#define ALWAYS_INLINE __attribute__((always_inline))
#define NO_INLINE __attribute__((noinline))
#define _delay_sub_us(x) __builtin_avr_delay_cycles(x)
// parity check
#define ODD_PARITY 1
#define EVEN_PARITY 0
#define PARITY EVEN_PARITY
#ifdef SERIAL_DELAY
// custom setup in config.h
// #define TID_SEND_ADJUST 2
// #define SERIAL_DELAY 6 // micro sec
// #define READ_WRITE_START_ADJUST 30 // cycles
// #define READ_WRITE_WIDTH_ADJUST 8 // cycles
#else
// ============ Standard setups ============
#ifndef SELECT_SOFT_SERIAL_SPEED
#define SELECT_SOFT_SERIAL_SPEED 1
// 0: about 189kbps
// 1: about 137kbps (default)
// 2: about 75kbps
// 3: about 39kbps
// 4: about 26kbps
// 5: about 20kbps
#endif
#if __GNUC__ < 6
#define TID_SEND_ADJUST 14
#else
#define TID_SEND_ADJUST 2
#endif
#if SELECT_SOFT_SERIAL_SPEED == 0
// Very High speed
#define SERIAL_DELAY 4 // micro sec
#if __GNUC__ < 6
#define READ_WRITE_START_ADJUST 33 // cycles
#define READ_WRITE_WIDTH_ADJUST 3 // cycles
#else
#define READ_WRITE_START_ADJUST 34 // cycles
#define READ_WRITE_WIDTH_ADJUST 7 // cycles
#endif
#elif SELECT_SOFT_SERIAL_SPEED == 1
// High speed
#define SERIAL_DELAY 6 // micro sec
#if __GNUC__ < 6
#define READ_WRITE_START_ADJUST 30 // cycles
#define READ_WRITE_WIDTH_ADJUST 3 // cycles
#else
#define READ_WRITE_START_ADJUST 33 // cycles
#define READ_WRITE_WIDTH_ADJUST 7 // cycles
#endif
#elif SELECT_SOFT_SERIAL_SPEED == 2
// Middle speed
#define SERIAL_DELAY 12 // micro sec
#define READ_WRITE_START_ADJUST 30 // cycles
#if __GNUC__ < 6
#define READ_WRITE_WIDTH_ADJUST 3 // cycles
#else
#define READ_WRITE_WIDTH_ADJUST 7 // cycles
#endif
#elif SELECT_SOFT_SERIAL_SPEED == 3
// Low speed
#define SERIAL_DELAY 24 // micro sec
#define READ_WRITE_START_ADJUST 30 // cycles
#if __GNUC__ < 6
#define READ_WRITE_WIDTH_ADJUST 3 // cycles
#else
#define READ_WRITE_WIDTH_ADJUST 7 // cycles
#endif
#elif SELECT_SOFT_SERIAL_SPEED == 4
// Very Low speed
#define SERIAL_DELAY 36 // micro sec
#define READ_WRITE_START_ADJUST 30 // cycles
#if __GNUC__ < 6
#define READ_WRITE_WIDTH_ADJUST 3 // cycles
#else
#define READ_WRITE_WIDTH_ADJUST 7 // cycles
#endif
#elif SELECT_SOFT_SERIAL_SPEED == 5
// Ultra Low speed
#define SERIAL_DELAY 48 // micro sec
#define READ_WRITE_START_ADJUST 30 // cycles
#if __GNUC__ < 6
#define READ_WRITE_WIDTH_ADJUST 3 // cycles
#else
#define READ_WRITE_WIDTH_ADJUST 7 // cycles
#endif
#else
#error invalid SELECT_SOFT_SERIAL_SPEED value
#endif /* SELECT_SOFT_SERIAL_SPEED */
#endif /* SERIAL_DELAY */
#define SERIAL_DELAY_HALF1 (SERIAL_DELAY/2)
#define SERIAL_DELAY_HALF2 (SERIAL_DELAY - SERIAL_DELAY/2)
#define SLAVE_INT_WIDTH_US 1
#ifndef SERIAL_USE_MULTI_TRANSACTION
#define SLAVE_INT_RESPONSE_TIME SERIAL_DELAY
#else
#define SLAVE_INT_ACK_WIDTH_UNIT 2
#define SLAVE_INT_ACK_WIDTH 4
#endif
static SSTD_t *Transaction_table = NULL;
static uint8_t Transaction_table_size = 0;
inline static void serial_delay(void) ALWAYS_INLINE;
inline static
void serial_delay(void) {
_delay_us(SERIAL_DELAY);
}
inline static void serial_delay_half1(void) ALWAYS_INLINE;
inline static
void serial_delay_half1(void) {
_delay_us(SERIAL_DELAY_HALF1);
}
inline static void serial_delay_half2(void) ALWAYS_INLINE;
inline static
void serial_delay_half2(void) {
_delay_us(SERIAL_DELAY_HALF2);
}
inline static void serial_output(void) ALWAYS_INLINE;
inline static
void serial_output(void) {
SERIAL_PIN_DDR |= SERIAL_PIN_MASK;
}
// make the serial pin an input with pull-up resistor
inline static void serial_input_with_pullup(void) ALWAYS_INLINE;
inline static
void serial_input_with_pullup(void) {
SERIAL_PIN_DDR &= ~SERIAL_PIN_MASK;
SERIAL_PIN_PORT |= SERIAL_PIN_MASK;
}
inline static uint8_t serial_read_pin(void) ALWAYS_INLINE;
inline static
uint8_t serial_read_pin(void) {
return !!(SERIAL_PIN_INPUT & SERIAL_PIN_MASK);
}
inline static void serial_low(void) ALWAYS_INLINE;
inline static
void serial_low(void) {
SERIAL_PIN_PORT &= ~SERIAL_PIN_MASK;
}
inline static void serial_high(void) ALWAYS_INLINE;
inline static
void serial_high(void) {
SERIAL_PIN_PORT |= SERIAL_PIN_MASK;
}
void soft_serial_initiator_init(SSTD_t *sstd_table, int sstd_table_size)
{
Transaction_table = sstd_table;
Transaction_table_size = (uint8_t)sstd_table_size;
serial_output();
serial_high();
}
void soft_serial_target_init(SSTD_t *sstd_table, int sstd_table_size)
{
Transaction_table = sstd_table;
Transaction_table_size = (uint8_t)sstd_table_size;
serial_input_with_pullup();
// Enable INT0-INT3,INT6
EIMSK |= EIMSK_BIT;
#if SERIAL_PIN_MASK == _BV(PE6)
// Trigger on falling edge of INT6
EICRB &= EICRx_BIT;
#else
// Trigger on falling edge of INT0-INT3
EICRA &= EICRx_BIT;
#endif
}
// Used by the sender to synchronize timing with the reciver.
static void sync_recv(void) NO_INLINE;
static
void sync_recv(void) {
for (uint8_t i = 0; i < SERIAL_DELAY*5 && serial_read_pin(); i++ ) {
}
// This shouldn't hang if the target disconnects because the
// serial line will float to high if the target does disconnect.
while (!serial_read_pin());
}
// Used by the reciver to send a synchronization signal to the sender.
static void sync_send(void) NO_INLINE;
static
void sync_send(void) {
serial_low();
serial_delay();
serial_high();
}
// Reads a byte from the serial line
static uint8_t serial_read_chunk(uint8_t *pterrcount, uint8_t bit) NO_INLINE;
static uint8_t serial_read_chunk(uint8_t *pterrcount, uint8_t bit) {
uint8_t byte, i, p, pb;
_delay_sub_us(READ_WRITE_START_ADJUST);
for( i = 0, byte = 0, p = PARITY; i < bit; i++ ) {
serial_delay_half1(); // read the middle of pulses
if( serial_read_pin() ) {
byte = (byte << 1) | 1; p ^= 1;
} else {
byte = (byte << 1) | 0; p ^= 0;
}
_delay_sub_us(READ_WRITE_WIDTH_ADJUST);
serial_delay_half2();
}
/* recive parity bit */
serial_delay_half1(); // read the middle of pulses
pb = serial_read_pin();
_delay_sub_us(READ_WRITE_WIDTH_ADJUST);
serial_delay_half2();
*pterrcount += (p != pb)? 1 : 0;
return byte;
}
// Sends a byte with MSB ordering
void serial_write_chunk(uint8_t data, uint8_t bit) NO_INLINE;
void serial_write_chunk(uint8_t data, uint8_t bit) {
uint8_t b, p;
for( p = PARITY, b = 1<<(bit-1); b ; b >>= 1) {
if(data & b) {
serial_high(); p ^= 1;
} else {
serial_low(); p ^= 0;
}
serial_delay();
}
/* send parity bit */
if(p & 1) { serial_high(); }
else { serial_low(); }
serial_delay();
serial_low(); // sync_send() / senc_recv() need raise edge
}
static void serial_send_packet(uint8_t *buffer, uint8_t size) NO_INLINE;
static
void serial_send_packet(uint8_t *buffer, uint8_t size) {
for (uint8_t i = 0; i < size; ++i) {
uint8_t data;
data = buffer[i];
sync_send();
serial_write_chunk(data,8);
}
}
static uint8_t serial_recive_packet(uint8_t *buffer, uint8_t size) NO_INLINE;
static
uint8_t serial_recive_packet(uint8_t *buffer, uint8_t size) {
uint8_t pecount = 0;
for (uint8_t i = 0; i < size; ++i) {
uint8_t data;
sync_recv();
data = serial_read_chunk(&pecount, 8);
buffer[i] = data;
}
return pecount == 0;
}
inline static
void change_sender2reciver(void) {
sync_send(); //0
serial_delay_half1(); //1
serial_low(); //2
serial_input_with_pullup(); //2
serial_delay_half1(); //3
}
inline static
void change_reciver2sender(void) {
sync_recv(); //0
serial_delay(); //1
serial_low(); //3
serial_output(); //3
serial_delay_half1(); //4
}
static inline uint8_t nibble_bits_count(uint8_t bits)
{
bits = (bits & 0x5) + (bits >> 1 & 0x5);
bits = (bits & 0x3) + (bits >> 2 & 0x3);
return bits;
}
// interrupt handle to be used by the target device
ISR(SERIAL_PIN_INTERRUPT) {
#ifndef SERIAL_USE_MULTI_TRANSACTION
serial_low();
serial_output();
SSTD_t *trans = Transaction_table;
#else
// recive transaction table index
uint8_t tid, bits;
uint8_t pecount = 0;
sync_recv();
bits = serial_read_chunk(&pecount,7);
tid = bits>>3;
bits = (bits&7) != nibble_bits_count(tid);
if( bits || pecount> 0 || tid > Transaction_table_size ) {
return;
}
serial_delay_half1();
serial_high(); // response step1 low->high
serial_output();
_delay_sub_us(SLAVE_INT_ACK_WIDTH_UNIT*SLAVE_INT_ACK_WIDTH);
SSTD_t *trans = &Transaction_table[tid];
serial_low(); // response step2 ack high->low
#endif
// target send phase
if( trans->target2initiator_buffer_size > 0 )
serial_send_packet((uint8_t *)trans->target2initiator_buffer,
trans->target2initiator_buffer_size);
// target switch to input
change_sender2reciver();
// target recive phase
if( trans->initiator2target_buffer_size > 0 ) {
if (serial_recive_packet((uint8_t *)trans->initiator2target_buffer,
trans->initiator2target_buffer_size) ) {
*trans->status = TRANSACTION_ACCEPTED;
} else {
*trans->status = TRANSACTION_DATA_ERROR;
}
} else {
*trans->status = TRANSACTION_ACCEPTED;
}
sync_recv(); //weit initiator output to high
}
/////////
// start transaction by initiator
//
// int soft_serial_transaction(int sstd_index)
//
// Returns:
// TRANSACTION_END
// TRANSACTION_NO_RESPONSE
// TRANSACTION_DATA_ERROR
// this code is very time dependent, so we need to disable interrupts
#ifndef SERIAL_USE_MULTI_TRANSACTION
int soft_serial_transaction(void) {
SSTD_t *trans = Transaction_table;
#else
int soft_serial_transaction(int sstd_index) {
if( sstd_index > Transaction_table_size )
return TRANSACTION_TYPE_ERROR;
SSTD_t *trans = &Transaction_table[sstd_index];
#endif
cli();
// signal to the target that we want to start a transaction
serial_output();
serial_low();
_delay_us(SLAVE_INT_WIDTH_US);
#ifndef SERIAL_USE_MULTI_TRANSACTION
// wait for the target response
serial_input_with_pullup();
_delay_us(SLAVE_INT_RESPONSE_TIME);
// check if the target is present
if (serial_read_pin()) {
// target failed to pull the line low, assume not present
serial_output();
serial_high();
*trans->status = TRANSACTION_NO_RESPONSE;
sei();
return TRANSACTION_NO_RESPONSE;
}
#else
// send transaction table index
int tid = (sstd_index<<3) | (7 & nibble_bits_count(sstd_index));
sync_send();
_delay_sub_us(TID_SEND_ADJUST);
serial_write_chunk(tid, 7);
serial_delay_half1();
// wait for the target response (step1 low->high)
serial_input_with_pullup();
while( !serial_read_pin() ) {
_delay_sub_us(2);
}
// check if the target is present (step2 high->low)
for( int i = 0; serial_read_pin(); i++ ) {
if (i > SLAVE_INT_ACK_WIDTH + 1) {
// slave failed to pull the line low, assume not present
serial_output();
serial_high();
*trans->status = TRANSACTION_NO_RESPONSE;
sei();
return TRANSACTION_NO_RESPONSE;
}
_delay_sub_us(SLAVE_INT_ACK_WIDTH_UNIT);
}
#endif
// initiator recive phase
// if the target is present syncronize with it
if( trans->target2initiator_buffer_size > 0 ) {
if (!serial_recive_packet((uint8_t *)trans->target2initiator_buffer,
trans->target2initiator_buffer_size) ) {
serial_output();
serial_high();
*trans->status = TRANSACTION_DATA_ERROR;
sei();
return TRANSACTION_DATA_ERROR;
}
}
// initiator switch to output
change_reciver2sender();
// initiator send phase
if( trans->initiator2target_buffer_size > 0 ) {
serial_send_packet((uint8_t *)trans->initiator2target_buffer,
trans->initiator2target_buffer_size);
}
// always, release the line when not in use
sync_send();
*trans->status = TRANSACTION_END;
sei();
return TRANSACTION_END;
}
#ifdef SERIAL_USE_MULTI_TRANSACTION
int soft_serial_get_and_clean_status(int sstd_index) {
SSTD_t *trans = &Transaction_table[sstd_index];
cli();
int retval = *trans->status;
*trans->status = 0;;
sei();
return retval;
}
#endif
#endif
// Helix serial.c history
// 2018-1-29 fork from let's split and add PD2, modify sync_recv() (#2308, bceffdefc)
// 2018-6-28 bug fix master to slave comm and speed up (#3255, 1038bbef4)
// (adjusted with avr-gcc 4.9.2)
// 2018-7-13 remove USE_SERIAL_PD2 macro (#3374, f30d6dd78)
// (adjusted with avr-gcc 4.9.2)
// 2018-8-11 add support multi-type transaction (#3608, feb5e4aae)
// (adjusted with avr-gcc 4.9.2)
// 2018-10-21 fix serial and RGB animation conflict (#4191, 4665e4fff)
// (adjusted with avr-gcc 7.3.0)
// 2018-10-28 re-adjust compiler depend value of delay (#4269, 8517f8a66)
// (adjusted with avr-gcc 5.4.0, 7.3.0)

84
keyboards/claw44/serial.h Normal file
View File

@@ -0,0 +1,84 @@
#ifndef SOFT_SERIAL_H
#define SOFT_SERIAL_H
#include <stdbool.h>
// /////////////////////////////////////////////////////////////////
// Need Soft Serial defines in config.h
// /////////////////////////////////////////////////////////////////
// ex.
// #define SOFT_SERIAL_PIN ?? // ?? = D0,D1,D2,D3,E6
// OPTIONAL: #define SELECT_SOFT_SERIAL_SPEED ? // ? = 1,2,3,4,5
// // 1: about 137kbps (default)
// // 2: about 75kbps
// // 3: about 39kbps
// // 4: about 26kbps
// // 5: about 20kbps
//
// //// USE Simple API (OLD API, compatible with let's split serial.c)
// ex.
// #define SERIAL_SLAVE_BUFFER_LENGTH MATRIX_ROWS/2
// #define SERIAL_MASTER_BUFFER_LENGTH 1
//
// //// USE flexible API (using multi-type transaction function)
// #define SERIAL_USE_MULTI_TRANSACTION
//
// /////////////////////////////////////////////////////////////////
#ifndef SERIAL_USE_MULTI_TRANSACTION
/* --- USE Simple API (OLD API, compatible with let's split serial.c) */
#if SERIAL_SLAVE_BUFFER_LENGTH > 0
extern volatile uint8_t serial_slave_buffer[SERIAL_SLAVE_BUFFER_LENGTH];
#endif
#if SERIAL_MASTER_BUFFER_LENGTH > 0
extern volatile uint8_t serial_master_buffer[SERIAL_MASTER_BUFFER_LENGTH];
#endif
void serial_master_init(void);
void serial_slave_init(void);
int serial_update_buffers(void);
#endif // USE Simple API
// Soft Serial Transaction Descriptor
typedef struct _SSTD_t {
uint8_t *status;
uint8_t initiator2target_buffer_size;
uint8_t *initiator2target_buffer;
uint8_t target2initiator_buffer_size;
uint8_t *target2initiator_buffer;
} SSTD_t;
#define TID_LIMIT( table ) (sizeof(table) / sizeof(SSTD_t))
// initiator is transaction start side
void soft_serial_initiator_init(SSTD_t *sstd_table, int sstd_table_size);
// target is interrupt accept side
void soft_serial_target_init(SSTD_t *sstd_table, int sstd_table_size);
// initiator resullt
#define TRANSACTION_END 0
#define TRANSACTION_NO_RESPONSE 0x1
#define TRANSACTION_DATA_ERROR 0x2
#define TRANSACTION_TYPE_ERROR 0x4
#ifndef SERIAL_USE_MULTI_TRANSACTION
int soft_serial_transaction(void);
#else
int soft_serial_transaction(int sstd_index);
#endif
// target status
// *SSTD_t.status has
// initiator:
// TRANSACTION_END
// or TRANSACTION_NO_RESPONSE
// or TRANSACTION_DATA_ERROR
// target:
// TRANSACTION_DATA_ERROR
// or TRANSACTION_ACCEPTED
#define TRANSACTION_ACCEPTED 0x8
#ifdef SERIAL_USE_MULTI_TRANSACTION
int soft_serial_get_and_clean_status(int sstd_index);
#endif
#endif /* SOFT_SERIAL_H */

346
keyboards/claw44/ssd1306.c Normal file
View File

@@ -0,0 +1,346 @@
#ifdef SSD1306OLED
#include "ssd1306.h"
#include "i2c.h"
#include <string.h>
#include "print.h"
#ifdef ADAFRUIT_BLE_ENABLE
#include "adafruit_ble.h"
#endif
#ifdef PROTOCOL_LUFA
#include "lufa.h"
#endif
#include "sendchar.h"
#include "timer.h"
static const unsigned char font[] PROGMEM;
// Set this to 1 to help diagnose early startup problems
// when testing power-on with ble. Turn it off otherwise,
// as the latency of printing most of the debug info messes
// with the matrix scan, causing keys to drop.
#define DEBUG_TO_SCREEN 0
//static uint16_t last_battery_update;
//static uint32_t vbat;
//#define BatteryUpdateInterval 10000 /* milliseconds */
// 'last_flush' is declared as uint16_t,
// so this must be less than 65535
#define ScreenOffInterval 60000 /* milliseconds */
#if DEBUG_TO_SCREEN
static uint8_t displaying;
#endif
static uint16_t last_flush;
static bool force_dirty = true;
// Write command sequence.
// Returns true on success.
static inline bool _send_cmd1(uint8_t cmd) {
bool res = false;
if (i2c_start_write(SSD1306_ADDRESS)) {
xprintf("failed to start write to %d\n", SSD1306_ADDRESS);
goto done;
}
if (i2c_master_write(0x0 /* command byte follows */)) {
print("failed to write control byte\n");
goto done;
}
if (i2c_master_write(cmd)) {
xprintf("failed to write command %d\n", cmd);
goto done;
}
res = true;
done:
i2c_master_stop();
return res;
}
// Write 2-byte command sequence.
// Returns true on success
static inline bool _send_cmd2(uint8_t cmd, uint8_t opr) {
if (!_send_cmd1(cmd)) {
return false;
}
return _send_cmd1(opr);
}
// Write 3-byte command sequence.
// Returns true on success
static inline bool _send_cmd3(uint8_t cmd, uint8_t opr1, uint8_t opr2) {
if (!_send_cmd1(cmd)) {
return false;
}
if (!_send_cmd1(opr1)) {
return false;
}
return _send_cmd1(opr2);
}
#define send_cmd1(c) if (!_send_cmd1(c)) {goto done;}
#define send_cmd2(c,o) if (!_send_cmd2(c,o)) {goto done;}
#define send_cmd3(c,o1,o2) if (!_send_cmd3(c,o1,o2)) {goto done;}
static void clear_display(void) {
matrix_clear(&display);
// Clear all of the display bits (there can be random noise
// in the RAM on startup)
send_cmd3(PageAddr, 0, (DisplayHeight / 8) - 1);
send_cmd3(ColumnAddr, 0, DisplayWidth - 1);
if (i2c_start_write(SSD1306_ADDRESS)) {
goto done;
}
if (i2c_master_write(0x40)) {
// Data mode
goto done;
}
for (uint8_t row = 0; row < MatrixRows; ++row) {
for (uint8_t col = 0; col < DisplayWidth; ++col) {
i2c_master_write(0);
}
}
display.dirty = false;
done:
i2c_master_stop();
}
#if DEBUG_TO_SCREEN
#undef sendchar
static int8_t capture_sendchar(uint8_t c) {
sendchar(c);
iota_gfx_write_char(c);
if (!displaying) {
iota_gfx_flush();
}
return 0;
}
#endif
bool iota_gfx_init(bool rotate) {
bool success = false;
i2c_master_init();
send_cmd1(DisplayOff);
send_cmd2(SetDisplayClockDiv, 0x80);
send_cmd2(SetMultiPlex, DisplayHeight - 1);
send_cmd2(SetDisplayOffset, 0);
send_cmd1(SetStartLine | 0x0);
send_cmd2(SetChargePump, 0x14 /* Enable */);
send_cmd2(SetMemoryMode, 0 /* horizontal addressing */);
if(rotate){
// the following Flip the display orientation 180 degrees
send_cmd1(SegRemap);
send_cmd1(ComScanInc);
}else{
// Flips the display orientation 0 degrees
send_cmd1(SegRemap | 0x1);
send_cmd1(ComScanDec);
}
send_cmd2(SetComPins, 0x2);
send_cmd2(SetContrast, 0x8f);
send_cmd2(SetPreCharge, 0xf1);
send_cmd2(SetVComDetect, 0x40);
send_cmd1(DisplayAllOnResume);
send_cmd1(NormalDisplay);
send_cmd1(DeActivateScroll);
send_cmd1(DisplayOn);
send_cmd2(SetContrast, 0); // Dim
clear_display();
success = true;
iota_gfx_flush();
#if DEBUG_TO_SCREEN
print_set_sendchar(capture_sendchar);
#endif
done:
return success;
}
bool iota_gfx_off(void) {
bool success = false;
send_cmd1(DisplayOff);
success = true;
done:
return success;
}
bool iota_gfx_on(void) {
bool success = false;
send_cmd1(DisplayOn);
success = true;
done:
return success;
}
void matrix_write_char_inner(struct CharacterMatrix *matrix, uint8_t c) {
*matrix->cursor = c;
++matrix->cursor;
if (matrix->cursor - &matrix->display[0][0] == sizeof(matrix->display)) {
// We went off the end; scroll the display upwards by one line
memmove(&matrix->display[0], &matrix->display[1],
MatrixCols * (MatrixRows - 1));
matrix->cursor = &matrix->display[MatrixRows - 1][0];
memset(matrix->cursor, ' ', MatrixCols);
}
}
void matrix_write_char(struct CharacterMatrix *matrix, uint8_t c) {
matrix->dirty = true;
if (c == '\n') {
// Clear to end of line from the cursor and then move to the
// start of the next line
uint8_t cursor_col = (matrix->cursor - &matrix->display[0][0]) % MatrixCols;
while (cursor_col++ < MatrixCols) {
matrix_write_char_inner(matrix, ' ');
}
return;
}
matrix_write_char_inner(matrix, c);
}
void iota_gfx_write_char(uint8_t c) {
matrix_write_char(&display, c);
}
void matrix_write(struct CharacterMatrix *matrix, const char *data) {
const char *end = data + strlen(data);
while (data < end) {
matrix_write_char(matrix, *data);
++data;
}
}
void matrix_write_ln(struct CharacterMatrix *matrix, const char *data) {
char data_ln[strlen(data)+2];
snprintf(data_ln, sizeof(data_ln), "%s\n", data);
matrix_write(matrix, data_ln);
}
void iota_gfx_write(const char *data) {
matrix_write(&display, data);
}
void matrix_write_P(struct CharacterMatrix *matrix, const char *data) {
while (true) {
uint8_t c = pgm_read_byte(data);
if (c == 0) {
return;
}
matrix_write_char(matrix, c);
++data;
}
}
void iota_gfx_write_P(const char *data) {
matrix_write_P(&display, data);
}
void matrix_clear(struct CharacterMatrix *matrix) {
memset(matrix->display, ' ', sizeof(matrix->display));
matrix->cursor = &matrix->display[0][0];
matrix->dirty = true;
}
void iota_gfx_clear_screen(void) {
matrix_clear(&display);
}
void matrix_render(struct CharacterMatrix *matrix) {
last_flush = timer_read();
iota_gfx_on();
#if DEBUG_TO_SCREEN
++displaying;
#endif
// Move to the home position
send_cmd3(PageAddr, 0, MatrixRows - 1);
send_cmd3(ColumnAddr, 0, (MatrixCols * FontWidth) - 1);
if (i2c_start_write(SSD1306_ADDRESS)) {
goto done;
}
if (i2c_master_write(0x40)) {
// Data mode
goto done;
}
for (uint8_t row = 0; row < MatrixRows; ++row) {
for (uint8_t col = 0; col < MatrixCols; ++col) {
const uint8_t *glyph = font + (matrix->display[row][col] * FontWidth);
for (uint8_t glyphCol = 0; glyphCol < FontWidth; ++glyphCol) {
uint8_t colBits = pgm_read_byte(glyph + glyphCol);
i2c_master_write(colBits);
}
// 1 column of space between chars (it's not included in the glyph)
//i2c_master_write(0);
}
}
matrix->dirty = false;
done:
i2c_master_stop();
#if DEBUG_TO_SCREEN
--displaying;
#endif
}
void iota_gfx_flush(void) {
matrix_render(&display);
}
__attribute__ ((weak))
void iota_gfx_task_user(void) {
}
void iota_gfx_task(void) {
iota_gfx_task_user();
if (display.dirty|| force_dirty) {
iota_gfx_flush();
force_dirty = false;
}
/*
if (timer_elapsed(last_flush) > ScreenOffInterval) {
iota_gfx_off();
}
*/
}
bool process_record_gfx(uint16_t keycode, keyrecord_t *record) {
force_dirty = true;
return true;
}
#endif

View File

@@ -0,0 +1,91 @@
#pragma once
#include <stdbool.h>
#include <stdio.h>
#include "pincontrol.h"
#include "action.h"
enum ssd1306_cmds {
DisplayOff = 0xAE,
DisplayOn = 0xAF,
SetContrast = 0x81,
DisplayAllOnResume = 0xA4,
DisplayAllOn = 0xA5,
NormalDisplay = 0xA6,
InvertDisplay = 0xA7,
SetDisplayOffset = 0xD3,
SetComPins = 0xda,
SetVComDetect = 0xdb,
SetDisplayClockDiv = 0xD5,
SetPreCharge = 0xd9,
SetMultiPlex = 0xa8,
SetLowColumn = 0x00,
SetHighColumn = 0x10,
SetStartLine = 0x40,
SetMemoryMode = 0x20,
ColumnAddr = 0x21,
PageAddr = 0x22,
ComScanInc = 0xc0,
ComScanDec = 0xc8,
SegRemap = 0xa0,
SetChargePump = 0x8d,
ExternalVcc = 0x01,
SwitchCapVcc = 0x02,
ActivateScroll = 0x2f,
DeActivateScroll = 0x2e,
SetVerticalScrollArea = 0xa3,
RightHorizontalScroll = 0x26,
LeftHorizontalScroll = 0x27,
VerticalAndRightHorizontalScroll = 0x29,
VerticalAndLeftHorizontalScroll = 0x2a,
};
// Controls the SSD1306 128x32 OLED display via i2c
#ifndef SSD1306_ADDRESS
#define SSD1306_ADDRESS 0x3C
#endif
#define DisplayHeight 32
#define DisplayWidth 128
#define FontHeight 8
#define FontWidth 6
#define MatrixRows (DisplayHeight / FontHeight)
#define MatrixCols (DisplayWidth / FontWidth)
struct CharacterMatrix {
uint8_t display[MatrixRows][MatrixCols];
uint8_t *cursor;
bool dirty;
};
struct CharacterMatrix display;
bool iota_gfx_init(bool rotate);
void iota_gfx_task(void);
bool iota_gfx_off(void);
bool iota_gfx_on(void);
void iota_gfx_flush(void);
void iota_gfx_write_char(uint8_t c);
void iota_gfx_write(const char *data);
void iota_gfx_write_P(const char *data);
void iota_gfx_clear_screen(void);
void iota_gfx_task_user(void);
void matrix_clear(struct CharacterMatrix *matrix);
void matrix_write_char_inner(struct CharacterMatrix *matrix, uint8_t c);
void matrix_write_char(struct CharacterMatrix *matrix, uint8_t c);
void matrix_write(struct CharacterMatrix *matrix, const char *data);
void matrix_write_ln(struct CharacterMatrix *matrix, const char *data);
void matrix_write_P(struct CharacterMatrix *matrix, const char *data);
void matrix_render(struct CharacterMatrix *matrix);
bool process_record_gfx(uint16_t keycode, keyrecord_t *record);

View File

@@ -22,7 +22,6 @@
#define DEBOUNCE 3
#define RGB_DISABLE_AFTER_TIMEOUT 0 // number of ticks to wait until disabling effects
#define RGB_DISABLE_WHEN_USB_SUSPENDED false // turn off effects when suspended
#define RGB_MATRIX_SKIP_FRAMES 10
#define RGB_MATRIX_KEYPRESSES
#define DISABLE_RGB_MATRIX_SPLASH
#define DISABLE_RGB_MATRIX_MULTISPLASH

View File

@@ -23,7 +23,6 @@
#define DEBOUNCE 3
#define RGB_DISABLE_AFTER_TIMEOUT 0 // number of ticks to wait until disabling effects
#define RGB_DISABLE_WHEN_USB_SUSPENDED false // turn off effects when suspended
#define RGB_MATRIX_SKIP_FRAMES 10
#define RGB_MATRIX_KEYPRESSES
#define DISABLE_RGB_MATRIX_SPLASH
#define DISABLE_RGB_MATRIX_MULTISPLASH

View File

@@ -109,7 +109,6 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#define DRIVER_1_LED_TOTAL 24
#define DRIVER_2_LED_TOTAL 24
#define DRIVER_LED_TOTAL DRIVER_1_LED_TOTAL + DRIVER_2_LED_TOTAL
#define RGB_MATRIX_SKIP_FRAMES 10
// #define RGBLIGHT_COLOR_LAYER_0 0x00, 0x00, 0xFF
/* #define RGBLIGHT_COLOR_LAYER_1 0x00, 0x00, 0xFF */

View File

@@ -0,0 +1,240 @@
/*
Copyright 2018 Jack Hildebrandt
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "config_common.h"
/* USB Device descriptor parameter */
#define VENDOR_ID 0x1EEE
#define PRODUCT_ID 0x1313
#define DEVICE_VER 0x0001
#define MANUFACTURER Jsck
#define PRODUCT Tennie
#define DESCRIPTION Ten key macropad
/* key matrix size */
#define MATRIX_ROWS 3
#define MATRIX_COLS 4
/*
* Keyboard Matrix Assignments
*
* Change this to how you wired your keyboard
* COLS: AVR pins used for columns, left to right
* ROWS: AVR pins used for rows, top to bottom
* DIODE_DIRECTION: COL2ROW = COL = Anode (+), ROW = Cathode (-, marked on diode)
* ROW2COL = ROW = Anode (+), COL = Cathode (-, marked on diode)
*
*/
#define MATRIX_ROW_PINS { C6, D4, D0}
#define MATRIX_COL_PINS { D7, E6, B4, B5 }
#define UNUSED_PINS { B1, B2, B3, B6, F4, F5, F6, F7 D1}
/* COL2ROW, ROW2COL, or CUSTOM_MATRIX */
#define DIODE_DIRECTION COL2ROW
/*
* Split Keyboard specific options, make sure you have 'SPLIT_KEYBOARD = yes' in your rules.mk, and define SOFT_SERIAL_PIN.
*/
//#define SOFT_SERIAL_PIN D0 // or D1, D2, D3, E6
// #define BACKLIGHT_PIN B7
// #define BACKLIGHT_BREATHING
// #define BACKLIGHT_LEVELS 3
#define RGBW
#define RGB_DI_PIN D1
#ifdef RGB_DI_PIN
#define RGBLED_NUM 1
#define RGBLIGHT_HUE_STEP 8
#define RGBLIGHT_SAT_STEP 8
#define RGBLIGHT_VAL_STEP 8
#define RGBLIGHT_LIMIT_VAL 255 /* The maximum brightness level */
// #define RGBLIGHT_SLEEP /* If defined, the RGB lighting will be switched off when the host goes to sleep */
// /*== all animations enable ==*/
#define RGBLIGHT_ANIMATIONS
// /*== or choose animations ==*/
// #define RGBLIGHT_EFFECT_BREATHING
// #define RGBLIGHT_EFFECT_RAINBOW_MOOD
// #define RGBLIGHT_EFFECT_RAINBOW_SWIRL
// #define RGBLIGHT_EFFECT_SNAKE
// #define RGBLIGHT_EFFECT_KNIGHT
// #define RGBLIGHT_EFFECT_CHRISTMAS
// #define RGBLIGHT_EFFECT_STATIC_GRADIENT
// #define RGBLIGHT_EFFECT_RGB_TEST
// #define RGBLIGHT_EFFECT_ALTERNATING
#endif
/* Debounce reduces chatter (unintended double-presses) - set 0 if debouncing is not needed */
#define DEBOUNCING_DELAY 5
/* define if matrix has ghost (lacks anti-ghosting diodes) */
//#define MATRIX_HAS_GHOST
/* number of backlight levels */
/* Mechanical locking support. Use KC_LCAP, KC_LNUM or KC_LSCR instead in keymap */
#define LOCKING_SUPPORT_ENABLE
/* Locking resynchronize hack */
#define LOCKING_RESYNC_ENABLE
/* If defined, GRAVE_ESC will always act as ESC when CTRL is held.
* This is userful for the Windows task manager shortcut (ctrl+shift+esc).
*/
// #define GRAVE_ESC_CTRL_OVERRIDE
/*
* Force NKRO
*
* Force NKRO (nKey Rollover) to be enabled by default, regardless of the saved
* state in the bootmagic EEPROM settings. (Note that NKRO must be enabled in the
* makefile for this to work.)
*
* If forced on, NKRO can be disabled via magic key (default = LShift+RShift+N)
* until the next keyboard reset.
*
* NKRO may prevent your keystrokes from being detected in the BIOS, but it is
* fully operational during normal computer usage.
*
* For a less heavy-handed approach, enable NKRO via magic key (LShift+RShift+N)
* or via bootmagic (hold SPACE+N while plugging in the keyboard). Once set by
* bootmagic, NKRO mode will always be enabled until it is toggled again during a
* power-up.
*
*/
//#define FORCE_NKRO
/*
* Magic Key Options
*
* Magic keys are hotkey commands that allow control over firmware functions of
* the keyboard. They are best used in combination with the HID Listen program,
* found here: https://www.pjrc.com/teensy/hid_listen.html
*
* The options below allow the magic key functionality to be changed. This is
* useful if your keyboard/keypad is missing keys and you want magic key support.
*
*/
/* control how magic key switches layers */
//#define MAGIC_KEY_SWITCH_LAYER_WITH_FKEYS true
//#define MAGIC_KEY_SWITCH_LAYER_WITH_NKEYS true
//#define MAGIC_KEY_SWITCH_LAYER_WITH_CUSTOM false
/* override magic key keymap */
//#define MAGIC_KEY_SWITCH_LAYER_WITH_FKEYS
//#define MAGIC_KEY_SWITCH_LAYER_WITH_NKEYS
//#define MAGIC_KEY_SWITCH_LAYER_WITH_CUSTOM
//#define MAGIC_KEY_HELP1 H
//#define MAGIC_KEY_HELP2 SLASH
//#define MAGIC_KEY_DEBUG D
//#define MAGIC_KEY_DEBUG_MATRIX X
//#define MAGIC_KEY_DEBUG_KBD K
//#define MAGIC_KEY_DEBUG_MOUSE M
//#define MAGIC_KEY_VERSION V
//#define MAGIC_KEY_STATUS S
//#define MAGIC_KEY_CONSOLE C
//#define MAGIC_KEY_LAYER0_ALT1 ESC
//#define MAGIC_KEY_LAYER0_ALT2 GRAVE
//#define MAGIC_KEY_LAYER0 0
//#define MAGIC_KEY_LAYER1 1
//#define MAGIC_KEY_LAYER2 2
//#define MAGIC_KEY_LAYER3 3
//#define MAGIC_KEY_LAYER4 4
//#define MAGIC_KEY_LAYER5 5
//#define MAGIC_KEY_LAYER6 6
//#define MAGIC_KEY_LAYER7 7
//#define MAGIC_KEY_LAYER8 8
//#define MAGIC_KEY_LAYER9 9
//#define MAGIC_KEY_BOOTLOADER PAUSE
//#define MAGIC_KEY_LOCK CAPS
//#define MAGIC_KEY_EEPROM E
//#define MAGIC_KEY_NKRO N
//#define MAGIC_KEY_SLEEP_LED Z
/*
* Feature disable options
* These options are also useful to firmware size reduction.
*/
/* disable debug print */
//#define NO_DEBUG
/* disable print */
//#define NO_PRINT
/* disable action features */
//#define NO_ACTION_LAYER
//#define NO_ACTION_TAPPING
//#define NO_ACTION_ONESHOT
//#define NO_ACTION_MACRO
//#define NO_ACTION_FUNCTION
/*
* MIDI options
*/
/* Prevent use of disabled MIDI features in the keymap */
//#define MIDI_ENABLE_STRICT 1
/* enable basic MIDI features:
- MIDI notes can be sent when in Music mode is on
*/
//#define MIDI_BASIC
/* enable advanced MIDI features:
- MIDI notes can be added to the keymap
- Octave shift and transpose
- Virtual sustain, portamento, and modulation wheel
- etc.
*/
//#define MIDI_ADVANCED
/* override number of MIDI tone keycodes (each octave adds 12 keycodes and allocates 12 bytes) */
//#define MIDI_TONE_KEYCODE_OCTAVES 1
/*
* HD44780 LCD Display Configuration
*/
/*
#define LCD_LINES 2 //< number of visible lines of the display
#define LCD_DISP_LENGTH 16 //< visibles characters per line of the display
#define LCD_IO_MODE 1 //< 0: memory mapped mode, 1: IO port mode
#if LCD_IO_MODE
#define LCD_PORT PORTB //< port for the LCD lines
#define LCD_DATA0_PORT LCD_PORT //< port for 4bit data bit 0
#define LCD_DATA1_PORT LCD_PORT //< port for 4bit data bit 1
#define LCD_DATA2_PORT LCD_PORT //< port for 4bit data bit 2
#define LCD_DATA3_PORT LCD_PORT //< port for 4bit data bit 3
#define LCD_DATA0_PIN 4 //< pin for 4bit data bit 0
#define LCD_DATA1_PIN 5 //< pin for 4bit data bit 1
#define LCD_DATA2_PIN 6 //< pin for 4bit data bit 2
#define LCD_DATA3_PIN 7 //< pin for 4bit data bit 3
#define LCD_RS_PORT LCD_PORT //< port for RS line
#define LCD_RS_PIN 3 //< pin for RS line
#define LCD_RW_PORT LCD_PORT //< port for RW line
#define LCD_RW_PIN 2 //< pin for RW line
#define LCD_E_PORT LCD_PORT //< port for Enable line
#define LCD_E_PIN 1 //< pin for Enable line
#endif
*/
/* Bootmagic Lite key configuration */
//#define BOOTMAGIC_LITE_ROW 0
//#define BOOTMAGIC_LITE_COLUMN 0

View File

@@ -0,0 +1,12 @@
{
"keyboard_name": "Tennie",
"url": "https://github.com/StoutIEEE/macropad-workshop",
"maintainer": "UW Stout IEEE, Jack Hildebrandt (onemorebyte)",
"width": 4,
"height": 3,
"layouts": {
"LAYOUT": {
"layout": [{"x":0.5, "y":0}, {"x":1.5, "y":0}, {"x":2.5, "y":0}, {"x":0, "y":1}, {"x":1, "y":1}, {"x":2, "y":1}, {"x":3, "y":1}, {"x":0.5, "y":2}, {"x":1.5, "y":2}, {"x":2.5, "y":2}]
}
}
}

View File

@@ -0,0 +1,19 @@
/* Copyright 2018 REPLACE_WITH_YOUR_NAME
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
// place overrides here

View File

@@ -0,0 +1,95 @@
/* Copyright 2018 Jack H.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include QMK_KEYBOARD_H
#define TAPPING_TOGGLE 2
// Layer names
#define base 0
#define shrek 1
#define ogre 2
#define tcp 3
// Layer Switches
#define KC_SHRK TT(shrek)
#define KC_OGRE TT(ogre)
#define KC_TCP TT(tcp)
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
[base] = LAYOUT(
// ┌────────┬────────┬────────┐
KC_DEL, KC_SPC, KC_ENT,
// ├────────┼────────┼────────┼────────┼
KC_LEFT, KC_DOWN, KC_UP , KC_RGHT,
// ├────────┼────────┼────────┼────────┼
KC_SHRK, KC_OGRE, KC_TCP
// └────────┴────────┴────────┘
),
[shrek] = LAYOUT(
// ┌────────┬────────┬────────┐
KC_MPRV, KC_MPLY, KC_MNXT,
// ├────────┼────────┼────────┼────────┼
KC_BRID, KC_VOLD, KC_VOLU, KC_BRIU,
// ├────────┼────────┼────────┼────────┼
_______, _______, _______
// └────────┴────────┴────────┘
),
[ogre] = LAYOUT(
// ┌────────┬────────┬────────┐
RGB_MOD, RGB_TOG, RGB_RMOD,
// ├────────┼────────┼────────┼────────┼
KC_F13, KC_F14, KC_F15, KC_F16,
// ├────────┼────────┼────────┼────────┼
_______, _______, _______
// └────────┴────────┴────────┘
),
[tcp] = LAYOUT(
// ┌────────┬────────┬────────┐
KC_WBAK, KC_WREF, KC_WFWD,
// ├────────┼────────┼────────┼────────┼
XXXXXXX, KC_PGDN, KC_PGUP, XXXXXXX,
// ├────────┼────────┼────────┼────────┼
_______, _______, _______
// └────────┴────────┴────────┘
),
};

View File

@@ -0,0 +1,68 @@
# Default keymap
This keymap is to serve as an example of how you could make a multi-layer keymap.
#### keymap
```
[base] = LAYOUT_kc(
// ┌────────┬────────┬────────┐
DEL , SPC , ENT ,
// ├────────┼────────┼────────┼────────┼
LEFT , DOWN , UP , RGHT ,
// ├────────┼────────┼────────┼────────┼
SHRK , OGRE , TCP
// └────────┴────────┴────────┘
),
[shrek] = LAYOUT_kc(
// ┌────────┬────────┬────────┐
MPRV , MPLY , MNXT ,
// ├────────┼────────┼────────┼────────┼
BRID , VOLD , VOLU , BRIU ,
// ├────────┼────────┼────────┼────────┼
_______, _______, _______
// └────────┴────────┴────────┘
),
[ogre] = LAYOUT_kc(
// ┌────────┬────────┬────────┐
RGB_MOD, RGB_TOG, RGB_RMOD
// ├────────┼────────┼────────┼────────┼
F13 , F14 , F15 , F16 ,
// ├────────┼────────┼────────┼────────┼
_______, _______, _______
// └────────┴────────┴────────┘
),
[tcp] = LAYOUT_kc(
// ┌────────┬────────┬────────┐
WBAK , WREF , WFWD ,
// ├────────┼────────┼────────┼────────┼
XXXXXXX , PGDN , PGUP , XXXXXXX ,
// ├────────┼────────┼────────┼────────┼
_______, _______, _______
// └────────┴────────┴────────┘
),
```

View File

@@ -0,0 +1,19 @@
/* Copyright 2018 Jack Hildebrandt
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
// place overrides here

View File

@@ -0,0 +1,37 @@
/* Copyright 2018 Jack Hildebrandt
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include QMK_KEYBOARD_H
// Layer names
#define base 0
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
[base] = LAYOUT(
// ┌────────┬────────┬────────┐
KC_1 , KC_2 , KC_3 ,
// ├────────┼────────┼────────┼────────┼
KC_4 , KC_5 , KC_6 , KC_7 ,
// ├────────┼────────┼────────┼────────┼
KC_8 , KC_9 , KC_0
// └────────┴────────┴────────┘
),
};

View File

@@ -0,0 +1,18 @@
# Simple numberpad keymap
This keymap is to test the soldering work of workshop participants. It can also be used as a simple base for a macropad keymap.
```
// ┌────────┬────────┬────────┐
1 , 2 , 3 ,
// ├────────┼────────┼────────┼────────┼
4 , 5 , 6 , 7 ,
// ├────────┼────────┼────────┼────────┼
8 , 9 , 0
// └────────┴────────┴────────┘
```

View File

@@ -0,0 +1,19 @@
/* Copyright 2018 Jacob Hillebrand
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
// place overrides here

View File

@@ -0,0 +1,37 @@
/* Copyright 2018 Jacob Hillebrand
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include QMK_KEYBOARD_H
// Layer names
#define base 0
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
[base] = LAYOUT(
// ┌────────┬────────┬────────┐
KC_F13 , KC_F14 , KC_F15 ,
// ├────────┼────────┼────────┼────────┼
KC_F16 , KC_F17 , KC_F18 , KC_F19 ,
// ├────────┼────────┼────────┼────────┼
KC_F20, KC_F21 , KC_F22
// └────────┴────────┴────────┘
),
};

View File

@@ -0,0 +1,19 @@
# Soundboard keymap
This keymap binds all keys to function keys 13-22 for something like a
soundboard (ie:[Resanance](https://www.reddit.com/r/discordapp/comments/44ldc1/soundboard_for_discord/))
```
// ┌────────┬────────┬────────┐
F13 , F14 , F15 ,
// ├────────┼────────┼────────┼────────┼
F16 , F17 , F18 , F19 ,
// ├────────┼────────┼────────┼────────┼
F20 , F21 , F22
// └────────┴────────┴────────┘
```

View File

@@ -0,0 +1,15 @@
# Tennie
![tennie](https://raw.githubusercontent.com/StoutIEEE/macropad-workshop/master/images/macropad.jpg)
A ten key macropad for a club workshop! More information, and build instructions can be found [here](https://github.com/StoutIEEE/macropad-workshop)
Keyboard Maintainer: [Jack Hildebrandt](https://github.com/onemorebyte), [UW Stout IEEE](https://github.com/StoutIEEE)
Hardware Supported: ProMicro
Make example for this keyboard (after setting up your build environment):
make handwired/tennie:default
See the [build environment setup](https://docs.qmk.fm/#/getting_started_build_tools) and the [make instructions](https://docs.qmk.fm/#/getting_started_make_guide) for more information. Brand new to QMK? Start with our [Complete Newbs Guide](https://docs.qmk.fm/#/newbs).

View File

@@ -0,0 +1,80 @@
# MCU name
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Bootloader selection
# Teensy halfkay
# Pro Micro caterina
# Atmel DFU atmel-dfu
# LUFA DFU lufa-dfu
# QMK DFU qmk-dfu
# atmega32a bootloadHID
BOOTLOADER = caterina
# If you don't know the bootloader type, then you can specify the
# Boot Section Size in *bytes* by uncommenting out the OPT_DEFS line
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
# OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# change yes to no to disable
#
BOOTMAGIC_ENABLE = lite # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = yes # Mouse keys(+4700)
EXTRAKEY_ENABLE = yes # Audio control and System control(+450)
CONSOLE_ENABLE = no # Console for debug(+400)
COMMAND_ENABLE = yes # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE = no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE = no # USB Nkey Rollover
BACKLIGHT_ENABLE = no # Enable keyboard backlight functionality on B7 by default
RGBLIGHT_ENABLE = yes # Enable keyboard RGB underglow
MIDI_ENABLE = no # MIDI support (+2400 to 4200, depending on config)
UNICODE_ENABLE = no # Unicode
BLUETOOTH_ENABLE = no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE = no # Audio output on port C6
FAUXCLICKY_ENABLE = no # Use buzzer to emulate clicky switches
HD44780_ENABLE = no # Enable support for HD44780 based LCDs (+400)

View File

@@ -0,0 +1,45 @@
/* Copyright 2018 Jack Hildebrandt
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "tennie.h"
void matrix_init_kb(void) {
matrix_init_user();
}
void matrix_post_init(void) {
rgblight_enable_noeeprom();
keyboard_post_init_user();
}
void matrix_scan_kb(void) {
// put your looping keyboard code here
// runs every cycle (a lot)
matrix_scan_user();
}
bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
// put your per-action keyboard code here
// runs for every action, just before processing by the firmware
return process_record_user(keycode, record);
}
//void led_set_kb(uint8_t usb_led) {
// put your keyboard LED indicator (ex: Caps Lock LED) toggling code here
// led_set_user(usb_led);
//}

View File

@@ -0,0 +1,37 @@
/* Copyright 2018 Jack Hildebrandt
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "quantum.h"
/* This a shortcut to help you visually see your layout.
*
* The first section contains all of the arguments representing the physical
* layout of the board and position of the keys.
*
* The second converts the arguments into a two-dimensional array which
* represents the switch matrix.
*/
#define LAYOUT( \
K00, K01, K02, \
K10, K11, K12, K13, \
K20, K21, K22 \
) \
{ \
{ K00, K01, K02, KC_NO }, \
{ K10, K11, K12, K13 }, \
{ K20, K21, K22, KC_NO }, \
}

View File

@@ -120,7 +120,6 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#define RGB_DISABLE_AFTER_TIMEOUT 0 // number of ticks to wait until disabling effects
#define RGB_DISABLE_WHEN_USB_SUSPENDED false // turn off effects when suspended
#define RGB_MATRIX_SKIP_FRAMES 0
#define RGB_MATRIX_MAXIMUM_BRIGHTNESS 215
#define DRIVER_ADDR_1 0b1110100

View File

@@ -0,0 +1,135 @@
/*
Base Copyright 2017 Luiz Ribeiro <luizribeiro@gmail.com>
Modified 2017 Andrew Novak <ndrw.nvk@gmail.com>
Modified 2018 Wayne Jones (WarmCatUK) <waynekjones@gmail.com>
Modified 2019 AbstractKB
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public LicensezZZ
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include QMK_KEYBOARD_H
enum layers {
_DEFLT,
_RAISE,
_LOWER,
_FN
};
enum custom_keycodes {
MYRGB_TG = SAFE_RANGE
};
bool rgbinit = true;
bool rgbon = true;
const uint8_t RGBLED_RAINBOW_SWIRL_INTERVALS[] PROGMEM = {1,5,5}; //only using the first one
void keyboard_post_init_user(void) {
rgblight_enable_noeeprom();
led_set_user(host_keyboard_leds());
}
uint32_t layer_state_set_user(uint32_t state) {
switch (biton32(state)) {
case _RAISE:
rgblight_sethsv_noeeprom(240,255,255);
rgblight_mode_noeeprom(RGBLIGHT_MODE_STATIC_LIGHT);
break;
case _LOWER:
rgblight_sethsv_noeeprom(0,255,255);
rgblight_mode_noeeprom(RGBLIGHT_MODE_STATIC_LIGHT);
break;
case _FN:
rgblight_sethsv_noeeprom(0,255,255);
rgblight_mode_noeeprom(RGBLIGHT_MODE_RAINBOW_SWIRL);
break;
default: //_DEFLT
rgblight_sethsv_noeeprom(0,0,255);
rgblight_mode_noeeprom(RGBLIGHT_MODE_STATIC_LIGHT);
break;
}
return state;
}
void led_set_user(uint8_t usb_led) {
if (usb_led & (1<<USB_LED_CAPS_LOCK)) {
rgblight_mode_noeeprom(RGBLIGHT_MODE_ALTERNATING);
} else {
layer_state_set_user(layer_state);
}
}
void myrgb_toggle(void) {
if (rgbon) {
rgblight_disable_noeeprom();
rgbon = false;
} else {
rgblight_enable_noeeprom();
layer_state_set_user(layer_state);
led_set_user(host_keyboard_leds());
rgbon = true;
}
}
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
switch(keycode) {
case MYRGB_TG:
if (record->event.pressed) {
myrgb_toggle();
}
return false;
default:
return true;
}
}
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
[_DEFLT] = LAYOUT( \
KC_ESC, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, KC_DEL, \
KC_TAB, KC_Q, KC_W, KC_E, KC_R, KC_T, KC_Y, KC_U, KC_I, KC_O, KC_P, KC_ENT, \
KC_BSPC, KC_A, KC_S, KC_D, KC_F, KC_G, KC_H, KC_J, KC_K, KC_L, KC_SCLN, KC_QUOT, \
KC_LSFT, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_N, KC_M, KC_COMM, KC_DOT, KC_SLSH, KC_RSFT, \
MO(_FN), KC_LCTL, KC_LGUI, KC_LALT, MO(_LOWER),KC_SPC,KC_SPC,MO(_RAISE),KC_LEFT, KC_DOWN, KC_UP, KC_RGHT \
),
[_RAISE] = LAYOUT( \
KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6, KC_F7, KC_F8, KC_F9, KC_F10, KC_F11, KC_F12, \
_______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, \
_______, _______, _______, _______, _______, _______, _______, _______, LCTL(LGUI(KC_LEFT)), LGUI(KC_L), LCTL(LGUI(KC_RGHT)), _______, \
_______, _______, _______, _______, _______, _______, _______, _______, KC_MPRV, KC_MNXT, KC_CAPS, _______, \
_______, _______, _______, _______, _______, _______, _______, _______, KC_MUTE, KC_VOLD, KC_VOLU, KC_MPLY \
),
[_LOWER] = LAYOUT( \
KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6, KC_F7, KC_F8, KC_F9, KC_F10, KC_F11, KC_F12, \
_______, KC_GRV, _______, _______, _______, _______, _______, _______, KC_MINS, KC_EQL, KC_BSLS, _______, \
_______, _______, _______, KC_LBRC, KC_RBRC, S(KC_9),S(KC_0),S(KC_LBRC),S(KC_RBRC),_______,_______,_______, \
_______, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, _______, \
_______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______ \
),
[_FN] = LAYOUT( \
_______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, RESET, \
_______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, \
_______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, \
_______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, \
_______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, MYRGB_TG \
)
};

View File

@@ -0,0 +1,6 @@
# My personal layout for the JJ50
It is an approximation of a 60% layout with the alternate layers set up for programming,
with brackets and parenthesis on the homerow
Other things I changed were swapping around delete, backspace, and capslock around
It also uses layer based rgb underglow, and the underglow flashes when capslock is enabled

View File

@@ -0,0 +1,37 @@
/*
This is the c configuration file for the keymap
Copyright 2012 Jun Wako <wakojun@gmail.com>
Copyright 2015 Jack Humbert
(Modified) Copyright 2019 AbstractKB
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
//my block------------
#define RGBLIGHT_ANIMATIONS
#define RGBLIGHT_SLEEP
/* Use I2C or Serial, not both */
#define USE_SERIAL
// #define USE_I2C
/* Select hand configuration */
#define MASTER_LEFT
// #define MASTER_RIGHT
// #define EE_HANDS

View File

@@ -0,0 +1,92 @@
#include QMK_KEYBOARD_H
enum layers {
_BASE,
_LIST
};
enum my_keycodes {
MYRGB_TG = SAFE_RANGE
};
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
[_BASE] = LAYOUT( \
KC_MPLY, KC_PSLS, KC_PAST, KC_ESC, KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6, KC_F7, KC_F8, KC_F9, KC_F10, KC_F11, KC_F12, MYRGB_TG, KC_PGUP, \
KC_MUTE, KC_PPLS, KC_PMNS, KC_GRV, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, KC_MINS, KC_EQL, KC_DEL, KC_PGDN, \
KC_P7, KC_P8, KC_P9, KC_TAB, KC_Q, KC_W, KC_E, KC_R, KC_T, KC_Y, KC_U, KC_I, KC_O, KC_P, KC_LBRC, KC_RBRC, KC_BSLS, KC_HOME, \
KC_P4, KC_P5, KC_P6, KC_BSPACE, KC_A, KC_S, KC_D, KC_F, KC_G, KC_H, KC_J, KC_K, KC_L, KC_SCLN, KC_QUOT, KC_ENT, KC_CAPS, KC_PSCR, \
KC_P1, KC_P2, KC_P3, KC_LSFT, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_N, KC_M, KC_COMM, KC_DOT, KC_SLSH, KC_RSFT, KC_UP, XXXXXXX, KC_INS, \
KC_P0, KC_PDOT, KC_PENT, TO(_LIST), KC_LCTL, KC_LGUI, KC_LALT, XXXXXXX, KC_SPC, KC_SPC, XXXXXXX, KC_RALT, KC_RGUI, KC_RCTL, KC_LEFT, KC_DOWN, KC_RGHT, XXXXXXX \
),
[_LIST] = LAYOUT( \
_______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______,
_______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______,
_______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______,
_______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______,
_______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______,
_______, _______, _______, TO(_BASE), _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______
)
};
bool rgbinit = true;
bool rgbon = true;
const uint8_t RGBLED_RAINBOW_SWIRL_INTERVALS[] PROGMEM = {1,5,5}; //only using the first one
void matrix_post_init_user(void) {
rgblight_enable_noeeprom();
led_set_user(host_keyboard_leds());
}
uint32_t layer_state_set_user(uint32_t state) {
switch (biton32(state)) {
case _LIST:
rgblight_sethsv_noeeprom(0,255,255);
rgblight_mode_noeeprom(RGBLIGHT_MODE_RAINBOW_SWIRL);
break;
default: //_BASE
rgblight_sethsv_noeeprom(0,0,255);
rgblight_mode_noeeprom(RGBLIGHT_MODE_STATIC_LIGHT);
break;
}
return state;
}
void led_set_user(uint8_t usb_led) {
if (usb_led & (1<<USB_LED_CAPS_LOCK)) {
rgblight_mode_noeeprom(RGBLIGHT_MODE_ALTERNATING);
} else {
layer_state_set_user(layer_state);
}
}
void myrgb_toggle(void) {
if (rgbon) {
rgblight_disable_noeeprom();
rgbon = false;
} else {
rgblight_enable_noeeprom();
layer_state_set_user(layer_state);
led_set_user(host_keyboard_leds());
rgbon = true;
}
}
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
switch(keycode) {
case MYRGB_TG:
if (record->event.pressed) {
myrgb_toggle();
}
return false;
default:
return true;
}
}

View File

@@ -0,0 +1,5 @@
# My personal layout for the BFO-9000
It is an approximation of a 96% layout with a left-hand number pad
Other things I changed were swapping around delete, backspace, and capslock
It also uses layer based rgb underglow, and the underglow flashes when capslock is enabled

View File

@@ -0,0 +1 @@
RGBLIGHT_ENABLE = yes

View File

@@ -15,10 +15,7 @@ You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef CONFIG_USER_H
#define CONFIG_USER_H
#include "config_common.h"
#pragma once
/* Use I2C or Serial, not both */
@@ -39,6 +36,5 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#define RGBLIGHT_VAL_STEP 8
*/
#define TAPPING_TERM 200
#include "../../config.h"
#endif

View File

@@ -1,6 +1,4 @@
#include "iris.h"
#include "action_layer.h"
#include "eeconfig.h"
#include QMK_KEYBOARD_H
extern keymap_config_t keymap_config;
@@ -85,13 +83,13 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
[_GAME] = LAYOUT_kc(
___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ ,
___ , T , Q , W , E , R , ___ , ___ , ___ , ___ , ___ , ___ ,
B , T , Q , W , E , R , ___ , ___ , ___ , ___ , ___ , ___ ,
TAB , LSFT, A , S , D , F , ___ , ___ , ___ , ___ , ___ , ___ ,
I , LCTL, Z , X , C , V , M, P , ___, ___ , ___ , ___ , ___ , ___ ,
LALT, LCTL, Z , X , C , V , M, P , ___, ___ , ___ , ___ , ___ , ___ ,
LALT , LALT , SPC, BSPC, MAC, ___
G , I , SPC, BSPC, MAC, ___
),
[_SYMBOL] = LAYOUT_kc(

View File

@@ -1,3 +1,5 @@
# Colemak layout for Iris rev2.1 with Mac and Windows layers and a Gaming Layer.
# Symbol layer is based on my Planck layout, so it provides numbers, symbols, and volume controls.
# Two Navigation layers, for Mac and Windows Colemak layers respectively.
# Iris
This is a simple Colemak layout for Iris rev2.1 with Mac and Windows layers and a Gaming Layer.
The Symbol layer is based on my Planck layout. It provides numbers, symbols, and volume controls.
There are two Navigation layers, for the Mac and Windows Colemak layers respectively.

View File

@@ -1,8 +1,6 @@
#ifndef CONFIG_USER_H
#pragma once
#define CONFIG_USER_H
#define TAPPING_TERM 200
#include "../../config.h"
#define PERMISSIVE_HOLD
#endif

View File

@@ -1,5 +1,4 @@
#pragma message "You may need to add LAYOUT_planck_grid to your keymap layers - see default for an example"
#include "planck.h"
#include QMK_KEYBOARD_H
#define A_BSPC LALT(KC_BSPC)
#define A_LEFT LALT(KC_LEFT)
@@ -8,7 +7,7 @@
#define GSL LGUI(S(KC_LEFT))
#define GSR LGUI(S(KC_RGHT))
#define G_TAB LGUI(KC_TAB)
#define G_GRV LGUI(KC_GRV) // MAC: switch between windows within an application
#define G_GRV LGUI(KC_GRV)
#define SftEnt SFT_T(KC_ENT)
#define NAV LT(2, KC_TAB)
@@ -21,8 +20,7 @@ enum {
SFT_LCK
};
//alias for tapdance
#define SftLck TD(SFT_LCK)
#define SftLck TD(SFT_LCK) /* alias for tapdance */
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
@@ -38,12 +36,12 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
* `-----------------------------------------------------------------------------------'
*/
[_COLEMAK] = {
{KC_GESC, KC_Q , KC_W , KC_F , KC_P , KC_G, KC_J, KC_L, KC_U, KC_Y, KC_SCLN, KC_BSPC},
{NAV , KC_A , KC_R , KC_S , KC_T , KC_D, KC_H, KC_N, KC_E, KC_I, KC_O, KC_QUOT},
{SftLck , KC_Z , KC_X , KC_C , KC_V , KC_B, KC_K, KC_M, KC_COMM, KC_DOT, KC_SLSH, SftEnt },
{KC_DEL , KC_LGUI, KC_LCTL, KC_LALT, KC_LGUI, KC_SPC, KC_SPC, MO(1), KC_LEFT, KC_DOWN, KC_UP, KC_RGHT}
},
[_COLEMAK] = LAYOUT_planck_grid(
KC_GESC, KC_Q , KC_W , KC_F , KC_P , KC_G, KC_J, KC_L, KC_U, KC_Y, KC_SCLN, KC_BSPC,
NAV , KC_A , KC_R , KC_S , KC_T , KC_D, KC_H, KC_N, KC_E, KC_I, KC_O, KC_QUOT,
SftLck , KC_Z , KC_X , KC_C , KC_V , KC_B, KC_K, KC_M, KC_COMM, KC_DOT, KC_SLSH, SftEnt ,
KC_DEL , KC_LGUI, KC_LCTL, KC_LALT, KC_LGUI, KC_SPC, KC_SPC, MO(1), KC_LEFT, KC_DOWN, KC_UP, KC_RGHT
),
/* Symbol
* ,-----------------------------------------------------------------------------------.
@@ -51,26 +49,26 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
* |------+------+------+------+------+-------------+------+------+------+------+------|
* | \| | ! | @ | # | $ | % | ^ | & | * | ( | ) | =+ |
* |------+------+------+------+------+------|------+------+------+------+------+------|
* | | Home | End | ScUp | ScDn | F1 | F2 | -_ |Pg Up | | / | |
* | | Home | End | ScUp | ScDn | BRMD | BRMU | -_ |Pg Up | | / | |
* |------+------+------+------+------+------+------+------+------+------+------+------|
* | `~ | | | |Alt(Bk)| | |Pg Dn | Vol- | Vol+ | |
* `-----------------------------------------------------------------------------------'
*/
[_SYMBOL] = {
{KC_LBRC, KC_1, KC_2, KC_3, KC_4 , KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, KC_RBRC},
{KC_BSLS, KC_EXLM, KC_AT, KC_HASH, KC_DLR, KC_PERC, KC_CIRC, KC_AMPR, KC_ASTR, KC_LPRN, KC_RPRN, KC_EQL },
{_______, KC_HOME, KC_END, KC_WH_U, KC_WH_D,KC_F1 , KC_F2 , KC_MINS, KC_PGUP, _______, _______, _______},
{KC_GRV, _______, _______, _______, A_BSPC, _______, _______, _______, KC_PGDN, KC_VOLD, KC_VOLU, KC_MUTE}
},
[_SYMBOL] = LAYOUT_planck_grid(
KC_LBRC, KC_1 , KC_2 , KC_3 , KC_4 , KC_5 , KC_6 , KC_7 , KC_8 , KC_9 , KC_0 , KC_RBRC,
KC_BSLS, KC_EXLM, KC_AT , KC_HASH, KC_DLR , KC_PERC, KC_CIRC, KC_AMPR, KC_ASTR, KC_LPRN, KC_RPRN, KC_EQL ,
_______, KC_HOME, KC_END , _______, _______, KC_BRMD, KC_BRMU, KC_MINS, KC_PGUP, _______, _______, _______,
KC_GRV, _______, _______, _______, A_BSPC , _______, _______, _______, KC_PGDN, KC_VOLD, KC_VOLU, KC_MUTE
),
/* Navigation*/
[_NAVIGATION] = {
{_______, _______, _______, _______, _______, _______, C_TAB , A_LEFT, KC_UP, A_RGHT , KC_DEL , _______},
{_______, _______, _______, _______, _______, _______, GSL , KC_LEFT, KC_DOWN, KC_RGHT, GSR , _______},
{_______, _______, _______, _______, _______, _______, G_TAB , KC_HOME, _______, KC_END, G_GRV , _______},
{RESET , _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______}
}
[_NAVIGATION] = LAYOUT_planck_grid(
_______, _______, _______, _______, _______, _______, C_TAB , A_LEFT, KC_UP, A_RGHT , KC_DEL , _______,
_______, _______, _______, _______, _______, _______, GSL , KC_LEFT, KC_DOWN, KC_RGHT, GSR , _______,
_______, _______, _______, _______, _______, _______, G_TAB , KC_HOME, _______, KC_END, G_GRV , _______,
RESET , _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______
)
};
// Shift vs capslock function. From bbaserdem's Planck keymap.

View File

@@ -1,3 +1,3 @@
TAP_DANCE_ENABLE = yes
MOUSEKEY_ENABLE = yes

View File

@@ -0,0 +1,127 @@
/* Copyright 2017 Jason Williams (Wilba)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "config_common.h"
// USB Device descriptor parameter
#define VENDOR_ID 0x5241 // "RW"
#define PRODUCT_ID 0x4B59 // "KY"
#define DEVICE_VER 0x0001
#define MANUFACTURER RAMA.WORKS
#define PRODUCT RAMA KOYU
#define DESCRIPTION RAMA KOYU Keyboard
// key matrix size
#define MATRIX_ROWS 5
#define MATRIX_COLS 15
// KOYU PCB pin-out
#define MATRIX_ROW_PINS { F0, F1, F4, F6, F7 }
#define MATRIX_COL_PINS { F5, D5, B1, B2, B3, D3, D2, C7, C6, B6, B5, B4, D7, D6, D4 }
#define UNUSED_PINS
// IS31FL3731 driver
#define DRIVER_COUNT 2
#define DRIVER_LED_TOTAL 72
// COL2ROW or ROW2COL
#define DIODE_DIRECTION COL2ROW
// Set 0 if debouncing isn't needed
#define DEBOUNCING_DELAY 5
// Mechanical locking support. Use KC_LCAP, KC_LNUM or KC_LSCR instead in keymap
#define LOCKING_SUPPORT_ENABLE
// Locking resynchronize hack
#define LOCKING_RESYNC_ENABLE
/*
* Feature disable options
* These options are also useful to firmware size reduction.
*/
// disable debug print
//#define NO_DEBUG
// disable print
//#define NO_PRINT
// disable action features
//#define NO_ACTION_LAYER
//#define NO_ACTION_TAPPING
//#define NO_ACTION_ONESHOT
//#define NO_ACTION_MACRO
//#define NO_ACTION_FUNCTION
#define RGB_BACKLIGHT_ENABLED 1
// This conditionally compiles the backlight code for KOYU specifics
#define RGB_BACKLIGHT_KOYU
// enable/disable LEDs based on layout
// they aren't really used if RGB_BACKLIGHT_M60_A defined
#define RGB_BACKLIGHT_USE_SPLIT_BACKSPACE 1
#define RGB_BACKLIGHT_USE_SPLIT_LEFT_SHIFT 0
#define RGB_BACKLIGHT_USE_SPLIT_RIGHT_SHIFT 1
#define RGB_BACKLIGHT_USE_7U_SPACEBAR 1
#define RGB_BACKLIGHT_USE_ISO_ENTER 0
#define RGB_BACKLIGHT_DISABLE_HHKB_BLOCKER_LEDS 1
// disable backlight when USB suspended (PC sleep/hibernate/shutdown)
#define RGB_BACKLIGHT_DISABLE_WHEN_USB_SUSPENDED 0
// disable backlight after timeout in minutes, 0 = no timeout
#define RGB_BACKLIGHT_DISABLE_AFTER_TIMEOUT 0
// the default effect (RGB test)
#define RGB_BACKLIGHT_EFFECT 255
// These define which keys in the matrix are alphas/mods
// Used for backlight effects so colors are different for
// alphas vs. mods
// Each value is for a row, bit 0 is column 0
// Alpha=0 Mod=1
#define RGB_BACKLIGHT_ALPHAS_MODS_ROW_0 0b0110000000000001
#define RGB_BACKLIGHT_ALPHAS_MODS_ROW_1 0b0110000000000001
#define RGB_BACKLIGHT_ALPHAS_MODS_ROW_2 0b0111000000000001
#define RGB_BACKLIGHT_ALPHAS_MODS_ROW_3 0b0111000000000001
#define RGB_BACKLIGHT_ALPHAS_MODS_ROW_4 0b0111100000000111
#define DYNAMIC_KEYMAP_LAYER_COUNT 4
// EEPROM usage
// TODO: refactor with new user EEPROM code (coming soon)
#define EEPROM_MAGIC 0x451F
#define EEPROM_MAGIC_ADDR 32
// Bump this every time we change what we store
// This will automatically reset the EEPROM with defaults
// and avoid loading invalid data from the EEPROM
#define EEPROM_VERSION 0x08
#define EEPROM_VERSION_ADDR 34
// Backlight config starts after EEPROM version
#define RGB_BACKLIGHT_CONFIG_EEPROM_ADDR 35
// Dynamic keymap starts after backlight config (35+31)
#define DYNAMIC_KEYMAP_EEPROM_ADDR 66
// Dynamic macro starts after dynamic keymaps (66+(4*5*15*2)) = (66+600)
#define DYNAMIC_KEYMAP_MACRO_EEPROM_ADDR 666
#define DYNAMIC_KEYMAP_MACRO_EEPROM_SIZE 358
#define DYNAMIC_KEYMAP_MACRO_COUNT 16

View File

@@ -0,0 +1,13 @@
{
"keyboard_name": "KOYU",
"url": "",
"maintainer": "Wilba",
"bootloader": "DFU",
"width": 16,
"height": 5,
"layouts": {
"LAYOUT_all": {
"layout": [{"label":"Esc", "x":0, "y":0}, {"label":"!", "x":1, "y":0}, {"label":"@", "x":2, "y":0}, {"label":"#", "x":3, "y":0}, {"label":"$", "x":4, "y":0}, {"label":"%", "x":5, "y":0}, {"label":"^", "x":6, "y":0}, {"label":"&", "x":7, "y":0}, {"label":"*", "x":8, "y":0}, {"label":"(", "x":9, "y":0}, {"label":")", "x":10, "y":0}, {"label":"_", "x":11, "y":0}, {"label":"+", "x":12, "y":0}, {"label":"PrtSc", "x":13, "y":0}, {"label":"Pause", "x":14, "y":0}, {"label":"Num Lock", "x":15, "y":0}, {"label":"Tab", "x":0, "y":1, "w":1.5}, {"label":"Q", "x":1.5, "y":1}, {"label":"W", "x":2.5, "y":1}, {"label":"E", "x":3.5, "y":1}, {"label":"R", "x":4.5, "y":1}, {"label":"T", "x":5.5, "y":1}, {"label":"Y", "x":6.5, "y":1}, {"label":"U", "x":7.5, "y":1}, {"label":"I", "x":8.5, "y":1}, {"label":"O", "x":9.5, "y":1}, {"label":"P", "x":10.5, "y":1}, {"label":"{", "x":11.5, "y":1}, {"label":"}", "x":12.5, "y":1}, {"label":"|", "x":13.5, "y":1, "w":1.5}, {"label":"Insert", "x":15, "y":1}, {"label":"Caps Lock", "x":0, "y":2, "w":1.75}, {"label":"A", "x":1.75, "y":2}, {"label":"S", "x":2.75, "y":2}, {"label":"D", "x":3.75, "y":2}, {"label":"F", "x":4.75, "y":2}, {"label":"G", "x":5.75, "y":2}, {"label":"H", "x":6.75, "y":2}, {"label":"J", "x":7.75, "y":2}, {"label":"K", "x":8.75, "y":2}, {"label":"L", "x":9.75, "y":2}, {"label":":", "x":10.75, "y":2}, {"label":"\"", "x":11.75, "y":2}, {"label":"Enter", "x":12.75, "y":2, "w":2.25}, {"label":"Home", "x":15, "y":2}, {"label":"Shift", "x":0, "y":3, "w":2.25}, {"label":"Z", "x":2.25, "y":3}, {"label":"X", "x":3.25, "y":3}, {"label":"C", "x":4.25, "y":3}, {"label":"V", "x":5.25, "y":3}, {"label":"B", "x":6.25, "y":3}, {"label":"N", "x":7.25, "y":3}, {"label":"M", "x":8.25, "y":3}, {"label":"<", "x":9.25, "y":3}, {"label":">", "x":10.25, "y":3}, {"label":"?", "x":11.25, "y":3}, {"label":"Shift", "x":12.25, "y":3, "w":1.75}, {"label":"\u2191", "x":14, "y":3}, {"label":"/", "x":15, "y":3}, {"label":"Ctrl", "x":0, "y":4, "w":1.5}, {"label":"Win", "x":1.5, "y":4}, {"label":"Alt", "x":2.5, "y":4, "w":1.5}, {"x":4, "y":4, "w":7}, {"label":"Ctrl", "x":11, "y":4, "w":1.5}, {"label":"\u2190", "x":13, "y":4}, {"label":"\u2193", "x":14, "y":4}, {"label":"\u2192", "x":15, "y":4}]
}
}
}

View File

@@ -0,0 +1,36 @@
#include QMK_KEYBOARD_H
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
// Default layer
[0] = LAYOUT_all(
KC_ESC, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, KC_MINS, KC_EQL, KC_BSLS, KC_DEL, KC_HOME,
KC_TAB, KC_Q, KC_W, KC_E, KC_R, KC_T, KC_Y, KC_U, KC_I, KC_O, KC_P, KC_LBRC, KC_RBRC, KC_BSPC, KC_PGUP,
KC_LCTL, KC_A, KC_S, KC_D, KC_F, KC_G, KC_H, KC_J, KC_K, KC_L, KC_SCLN, KC_QUOT, KC_ENT, KC_PGDN,
KC_LSFT, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_N, KC_M, KC_COMM, KC_DOT, KC_SLSH, KC_RSFT, KC_UP, KC_END,
MO(1), KC_LGUI, KC_LALT, KC_SPC, MO(2), KC_LEFT, KC_DOWN, KC_RGHT),
// Fn1 Layer
[1] = LAYOUT_all(
KC_GRV, KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6, KC_F7, KC_F8, KC_F9, KC_F10, KC_F11, KC_F12, KC_INS, KC_DEL, KC_TRNS,
KC_CAPS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_PSCR, KC_SLCK, KC_PAUS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS,
KC_TRNS, KC_VOLD, KC_VOLU, KC_MUTE, KC_EJCT, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS),
// Fn2 Layer
[2] = LAYOUT_all(
KC_TRNS, EF_DEC, EF_INC, H1_DEC, H1_INC, H2_DEC, H2_INC, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, BR_DEC, BR_INC, KC_TRNS, KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, S1_DEC, S1_INC, S2_DEC, S2_INC, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, ES_DEC, ES_INC, KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS),
// Fn3 Layer
[3] = LAYOUT_all(
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS),
};

View File

@@ -0,0 +1,18 @@
/* Copyright 2018 Jason Williams (Wilba)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef RGB_BACKLIGHT_KOYU
#error RGB_BACKLIGHT_KOYU not defined, you done goofed somehao, brah
#endif

View File

@@ -0,0 +1,42 @@
/* Copyright 2018 Jason Williams (Wilba)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "quantum.h"
#include "../../zeal60/rgb_backlight_keycodes.h"
#include "../../zeal60/zeal60_keycodes.h"
#define ____ KC_NO
// Right switch of split backspace is at 2,13 and is the only switch
// whose physical position doesn't match switch matrix position :-(
// However, it also makes no sense to view the physical as 16 columns,
// so the numbering goes 00 to 14. Deal with it.
#define LAYOUT_all( \
K000, K001, K002, K003, K004, K005, K006, K007, K008, K009, K010, K011, K012, K013, K213, K014, \
K100, K101, K102, K103, K104, K105, K106, K107, K108, K109, K110, K111, K112, K113, K114, \
K200, K201, K202, K203, K204, K205, K206, K207, K208, K209, K210, K211, K212, K214, \
K300, K302, K303, K304, K305, K306, K307, K308, K309, K310, K311, K312, K313, K314, \
K400, K401, K402, K407, K411, K412, K413, K414 \
) { \
{ K000, K001, K002, K003, K004, K005, K006, K007, K008, K009, K010, K011, K012, K013, K014 }, \
{ K100, K101, K102, K103, K104, K105, K106, K107, K108, K109, K110, K111, K112, K113, K114 }, \
{ K200, K201, K202, K203, K204, K205, K206, K207, K208, K209, K210, K211, K212, K213, K214 }, \
{ K300, ____, K302, K303, K304, K305, K306, K307, K308, K309, K310, K311, K312, K313, K314 }, \
{ K400, K401, K402, ____, ____, ____, ____, K407, ____, ____, ____, K411, K412, K413, K414 } \
}

View File

@@ -0,0 +1,23 @@
# RAMA KOYU
![RAMA KOYU](https://static1.squarespace.com/static/563c788ae4b099120ae219e2/t/5b8bd6e6b8a045c95eac2003/1535891375794/RW-KOYU-A-RENDER-04-TOP.1335.jpg?format=1500w)
The <20>wait<69> for something isn<73>t the most conscious desire, but that anticipation creates nostalgia.
At Rama Works, you<6F>ve embraced this. From updates of the blog, to direct communication with the community, being part of a Rama Works product doesn<73>t just start when you receive it. If you<6F>ve ever received a Rama Works product, you know that no detail is overlooked.
Let us take you on a journey that will capture that sensory experience, and explore the gravitational interaction between aesthetic and design. The Rama Works <20>X<EFBFBD> element personifies the understanding that taking something away doesn<73>t necessarily make it less.
This is the sound of Rama Works. Never too busy<73>a feeling of delightful modern weightlessness. A rich sonic experience. Sparse and ethereal, this music boldly inhabits a nondescript, borderless space. Warm, synthetic textures, bespoke musical sound design. percussive elements percolating and accentuating movement on the screen and in the stereo field. a sonic palette full of clicks, taps and resonances evoking a sense of calm comfort and familiarity.
[More info at RAMA WORKS](https://rama.works/koyu/)
Keyboard Maintainer: [Wilba6582](https://github.com/Wilba6582)
Hardware Supported: RAMA KOYU PCB
Hardware Availability: [RAMA WORKS Store](https://ramaworks.store/)
Make example for this keyboard (after setting up your build environment):
make rama/koyu:default
See the [build environment setup](https://docs.qmk.fm/#/getting_started_build_tools) and the [make instructions](https://docs.qmk.fm/#/getting_started_make_guide) for more information. Brand new to QMK? Start with our [Complete Newbs Guide](https://docs.qmk.fm/#/newbs).

View File

@@ -0,0 +1,80 @@
# project specific files
SRC = keyboards/zeal60/zeal60.c \
keyboards/zeal60/rgb_backlight.c \
quantum/color.c \
drivers/issi/is31fl3731.c \
drivers/avr/i2c_master.c
# MCU name
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section
BOOTLOADER = atmel-dfu
# Do not put the microcontroller into power saving mode
# when we get USB suspend event. We want it to keep updating
# backlight effects.
OPT_DEFS += -DNO_SUSPEND_POWER_DOWN
# Build Options
# change to "no" to disable the options, or define them in the Makefile in
# the appropriate keymap folder that will get included automatically
#
BOOTMAGIC_ENABLE = no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = no # Mouse keys(+4700)
EXTRAKEY_ENABLE = yes # Audio control and System control(+450)
CONSOLE_ENABLE = no # Console for debug(+400)
COMMAND_ENABLE = no # Commands for debug and configuration
NKRO_ENABLE = yes # Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE = no # Enable keyboard backlight functionality
MIDI_ENABLE = no # MIDI controls
AUDIO_ENABLE = no # Audio output on port C6
UNICODE_ENABLE = no # Unicode
BLUETOOTH_ENABLE = no # Enable Bluetooth with the Adafruit EZ-Key HID
RGBLIGHT_ENABLE = no # Enable WS2812 RGB underlight.
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE = no # Breathing sleep LED during USB suspend
RAW_ENABLE = yes
DYNAMIC_KEYMAP_ENABLE = yes
CIE1931_CURVE = yes
#LAYOUTS = ???

40
keyboards/romac/config.h Normal file
View File

@@ -0,0 +1,40 @@
#pragma once
#include "config_common.h"
/* USB Device descriptor parameter */
#define VENDOR_ID 0xFEED
#define PRODUCT_ID 0x6060
#define DEVICE_VER 0x0001
#define MANUFACTURER TheRoyalSweatshirt
#define PRODUCT romac
#define DESCRIPTION A *Plaid inspired twelve-key macropad
/* key matrix size */
#define MATRIX_ROWS 4
#define MATRIX_COLS 3
/* key matrix pins */
#define MATRIX_ROW_PINS { D4, C6, D7, E6 }
#define MATRIX_COL_PINS { F7, B1, B3 }
#define UNUSED_PINS
/* COL2ROW or ROW2COL */
#define DIODE_DIRECTION COL2ROW
/* number of backlight levels */
#define BACKLIGHT_LEVELS 0
/* Set 0 if debouncing isn't needed */
#define DEBOUNCING_DELAY 5
/* Mechanical locking support. Use KC_LCAP, KC_LNUM or KC_LSCR instead in keymap */
#define LOCKING_SUPPORT_ENABLE
/* Locking resynchronize hack */
#define LOCKING_RESYNC_ENABLE
#define RGBLED_NUM 0
#define RGBLIGHT_HUE_STEP 8
#define RGBLIGHT_SAT_STEP 8
#define RGBLIGHT_VAL_STEP 8

13
keyboards/romac/info.json Normal file
View File

@@ -0,0 +1,13 @@
{
"keyboard_name": "RoMac",
"url": "",
"maintainer": "TheRoyalSweatshirt",
"width": 3,
"height": 4,
"layouts": {
"LAYOUT": {
"key_count": 12,
"layout": [{"x":0, "y":0}, {"x":1, "y":0}, {"x":2, "y":0}, {"x":0, "y":1}, {"x":1, "y":1}, {"x":2, "y":1}, {"x":0, "y":2}, {"x":1, "y":2}, {"x":2, "y":2}, {"x":0, "y":3}, {"x":1, "y":3}, {"x":2, "y":3}]
}
}
}

View File

@@ -0,0 +1,37 @@
/* Copyright 2018 Jack Humbert
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include QMK_KEYBOARD_H
#define _BASE 0
#define _FN1 1
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
[_BASE] = LAYOUT(
KC_7, KC_8, KC_9, \
KC_4, KC_5, KC_6, \
KC_1, KC_2, KC_3, \
MO(_FN1), KC_0, KC_ENT \
),
[_FN1] = LAYOUT(
KC_TRNS, KC_HOME, KC_PGUP, \
KC_TRNS, KC_END, KC_PGDN, \
KC_TRNS, KC_TRNS, KC_TRNS, \
KC_TRNS, KC_TRNS, KC_DOT \
)
};

16
keyboards/romac/readme.md Normal file
View File

@@ -0,0 +1,16 @@
# RoMac
![RoMac](https://i.imgur.com/hAOyoqj.jpg)
A “Plaid” Inspired 12-Key (3x4) Macropad.
- Keyboard Maintainer: [Garret G.](https://github.com/TheRoyalSweatshirt)
- Hardware Supported: RoMac rev.1, rev.2, Pro Micro, Elite-C, Proton C, BlueMicro.
- Hardware Availability: Through GB or Direct Message (If extra stock is available).
Make example for this keyboard (after setting up your build environment):
make romac:default
See the [build environment setup](https://docs.qmk.fm/#/getting_started_build_tools) and the [make instructions](https://docs.qmk.fm/#/getting_started_make_guide) for more information. Brand new to QMK? Start with our [Complete Newbs Guide](https://docs.qmk.fm/#/newbs).

1
keyboards/romac/romac.c Normal file
View File

@@ -0,0 +1 @@
#include "romac.h"

16
keyboards/romac/romac.h Normal file
View File

@@ -0,0 +1,16 @@
#pragma once
#include "quantum.h"
#define LAYOUT( \
K00, K01, K02, \
K10, K11, K12, \
K20, K21, K22, \
K30, K31, K32 \
) \
{ \
{ K00, K01, K02 }, \
{ K10, K11, K12 }, \
{ K20, K21, K22 }, \
{ K30, K31, K32 } \
}

57
keyboards/romac/rules.mk Normal file
View File

@@ -0,0 +1,57 @@
# MCU name
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE = full # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = yes # Mouse keys(+4700)
EXTRAKEY_ENABLE = yes # Audio control and System control(+450)
CONSOLE_ENABLE = no # Console for debug(+400)
COMMAND_ENABLE = no # Commands for debug and configuration
SLEEP_LED_ENABLE = no # Breathing sleep LED during USB suspend
NKRO_ENABLE = yes # USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE = no # Enable keyboard backlight functionality
AUDIO_ENABLE = no
RGBLIGHT_ENABLE = no

View File

@@ -1,51 +1,53 @@
#include QMK_KEYBOARD_H
//aliases for clarity in layering
#define A_BSPC LALT(KC_BSPC) // delete whole word in Mac
// #define C_BSPS LCTL(KC_BSPC) // delete whole word in PC; currently not in use
#define C_BSPC LCTL(KC_BSPC) // delete whole word in PC
#define A_LEFT LALT(KC_LEFT)
#define A_RGHT LALT(KC_RGHT)
#define C_RGHT LCTL(KC_RGHT)
#define C_LEFT LCTL(KC_LEFT)
#define SftEnt SFT_T(KC_ENT)
#define GBSPC LGUI_T(KC_BSPC)
#define CBSPC LCTL_T(KC_BSPC)
#define BS_GUI LGUI_T(KC_BSPC)
#define BS_CTL LCTL_T(KC_BSPC)
//internet browser tab shortcuts and window swapping for Mac and Win
// internet browser tab shortcuts and window/application swapping for Mac and Win
#define GSL LGUI(S(KC_LEFT)) // back one tab in Safari
#define GSR LGUI(S(KC_RGHT)) // forward one tab in Safari
#define CTLPGDN LCTL(KC_PGDN) // back one tab on Windows
#define CTLPGUP LCTL(KC_PGUP) // forward one tab on Windows
#define G_TAB LGUI(KC_TAB) // MAC: switch applications
#define G_GRV LGUI(KC_GRV) // MAC: switch between windows within an application
#define G_TAB LGUI(KC_TAB) // Mac: switch applications
#define G_GRV LGUI(KC_GRV) // Mac: switch between windows within an application
#define A_TAB LALT(KC_TAB)
#define C_TAB LCTL(KC_TAB)
//
#define NAV LT(3, KC_TAB)
#define NAVPC LT(4, KC_TAB)
// navigation layers for both Mac OS X and Windows
#define NAV LT(4, KC_TAB)
#define NAVPC LT(5, KC_TAB)
// Layer shorthand
#define _COLEMAK 0
#define _PC 1
#define _SYMBOL 2 //Function keys, numbers, symbols, Backlighting
#define _NAV 3 //Navigation Layer on Mac
#define _NAVPC 4 //Navigation Layer on Win
#define _GAME 2 // Gaming layer
#define _SYMBOL 3 // Function keys, numbers, symbols, Backlighting
#define _NAV 4 // Navigation Layer on Mac
#define _NAVPC 5 // Navigation Layer on Win
//tapdance declarations
// tapdance declarations
enum {
SFT_LCK
};
//alias for tapdance
// alias for tapdance
#define SftLck TD(SFT_LCK)
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
/* COLEMAK
* .--------------------------------------------------------------------------------------------------------------------------------------.
* | `~ | 1 | 2 | 3 | 4 | 5 | - | SWITCH | = | 6 | 7 | 8 | 9 | 0 | BACKSP |
* | `~ | 1 | 2 | 3 | 4 | 5 | -_ | PC | =+ | 6 | 7 | 8 | 9 | 0 | BACKSP |
* |--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+-----------------|
* | ESC/`~ | Q | W | F | P | G | [ | \ | ] | J | L | U | Y | ; | BACKSP |
* | ESC/`~ | Q | W | F | P | G | [ | \| | ] | J | L | U | Y | ; | BACKSP |
* |--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+-----------------+--------|
* | NAVTAB | A | S | D | F | G | PgUp |PlayPaus| ENTER | H | N | E | I | O | ' |
* |--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------------------------+--------|
@@ -55,24 +57,32 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
* '--------------------------------------------------------------------------------------------------------------------------------------'
*/
[_COLEMAK] = { /* COLEMAK */
{ KC_GRV , KC_1, KC_2, KC_3, KC_4, KC_5, KC_MINS, TG(1) , KC_EQL, KC_6, KC_7, KC_8, KC_9, KC_0, KC_BSPC },
{ KC_GESC, KC_Q, KC_W, KC_F, KC_P, KC_G, KC_LBRC, KC_BSLS, KC_RBRC, KC_J, KC_L, KC_U, KC_Y, KC_SCLN, KC_BSPC },
{ NAV , KC_A, KC_R, KC_S, KC_T, KC_D, KC_PGUP, KC_ESC , KC_ENT , KC_H, KC_N, KC_E, KC_I, KC_O, KC_QUOT },
{ SftLck , KC_Z, KC_X, KC_C, KC_V, KC_B, KC_PGDN, KC_UP , KC_ENT , KC_K, KC_M, KC_COMM, KC_DOT, KC_SLSH, SftEnt },
{ KC_DEL , KC_LGUI, KC_LCTL, KC_LALT, KC_LGUI, GBSPC, KC_LEFT, KC_DOWN, KC_RGHT, KC_SPC, MO(2) , KC_RGUI, KC_RALT, KC_RCTL, BL_STEP },
},
[_COLEMAK] = LAYOUT_ortho_5x15( /* COLEMAK */
KC_GRV , KC_1, KC_2, KC_3, KC_4, KC_5, KC_MINS, TG(1) , KC_EQL, KC_6, KC_7, KC_8, KC_9, KC_0, KC_BSPC,
KC_GESC, KC_Q, KC_W, KC_F, KC_P, KC_G, KC_LBRC, KC_BSLS, KC_RBRC, KC_J, KC_L, KC_U, KC_Y, KC_SCLN, KC_BSPC,
NAV , KC_A, KC_R, KC_S, KC_T, KC_D, KC_PGUP, KC_ESC , KC_ENT , KC_H, KC_N, KC_E, KC_I, KC_O, KC_QUOT,
SftLck , KC_Z, KC_X, KC_C, KC_V, KC_B, KC_PGDN, KC_UP , KC_ENT , KC_K, KC_M, KC_COMM, KC_DOT, KC_SLSH, SftEnt ,
KC_DEL , KC_LGUI, KC_LCTL, KC_LALT, KC_LGUI, BS_GUI, KC_LEFT, KC_DOWN, KC_RGHT, KC_SPC, MO(3) , KC_RGUI, KC_RALT, KC_RCTL, BL_STEP
),
// Windows Layer: essentially swaps Control and GUI
[_PC] = { /* WINDOWS */
{ _______, _______, _______, _______, _______, _______, _______, TG(0) , _______, _______, _______, _______, _______, _______, _______ },
{ _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______ },
{ NAVPC , _______, _______, _______, _______, _______, _______, KC_MPLY, _______, _______, _______, _______, _______, _______, _______ },
{ _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______ },
{ _______, KC_LCTL, KC_LGUI, _______, KC_LCTL, _______, _______, _______, _______, _______, _______, KC_RCTL, KC_RALT, KC_RGUI, _______ },
},
[_PC] = LAYOUT_ortho_5x15( /* WINDOWS */
_______, _______, _______, _______, _______, _______, _______, TG(2) , _______, _______, _______, _______, _______, _______, _______,
_______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______,
NAVPC , _______, _______, _______, _______, _______, _______, KC_MPLY, _______, _______, _______, _______, _______, _______, _______,
_______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______,
_______, KC_LCTL, KC_LGUI, _______, KC_LCTL, BS_CTL , _______, _______, _______, _______, _______, KC_RCTL, KC_RALT, KC_RGUI, _______
),
[_GAME] = LAYOUT_ortho_5x15( /* Gaming Layer */
_______, KC_1 , KC_2 , KC_3 , KC_4 , KC_5 , KC_F10 , KC_F11 , KC_F12 , _______, _______, _______, _______, _______, TO(0) ,
KC_ESC , KC_T , KC_Q , KC_W , KC_E , KC_R , KC_F7 , KC_F8 , KC_F9 , KC_Y , KC_U , KC_I , KC_O , KC_P , _______,
KC_TAB , KC_LSFT, KC_A , KC_S , KC_D , KC_F , KC_F4 , KC_F5 , KC_F6 , KC_H , KC_J , KC_K , KC_L , KC_SCLN, _______,
KC_LALT, KC_LCTL, KC_Z , KC_X , KC_C , KC_V , KC_F1 , KC_F2 , KC_F3 , KC_N , KC_M , _______, _______, _______, KC_ENT ,
_______, _______, _______, KC_G , KC_B , KC_SPC , KC_I , KC_M , _______, _______, KC_LEFT, KC_DOWN, KC_UP , KC_RGHT, _______
),
/* SYMBOL
* .--------------------------------------------------------------------------------------------------------------------------------------.
* | F12 | F1 | F2 | F3 | F4 | F5 | | | | F6 | F7 | F8 | F9 | F10 | F11 |
@@ -87,30 +97,30 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
* '--------------------------------------------------------------------------------------------------------------------------------------'
*/
[_SYMBOL] = { /* SYMBOL */
{ _______, KC_F1 , KC_F2 , KC_F3 , KC_F4 , KC_F5 , _______, _______, _______, KC_F6 , KC_F7 , KC_F8 , KC_F9 , KC_F10 , _______},
{ KC_LBRC, KC_1 , KC_2 , KC_3 , KC_4 , KC_5 , _______, _______, _______, KC_6 , KC_7 , KC_8 , KC_9 , KC_0 , KC_RBRC},
{ _______, KC_EXLM, KC_AT , KC_HASH, KC_DLR , KC_PERC, _______, _______, _______, KC_CIRC, KC_AMPR, KC_ASTR, KC_LPRN, KC_RPRN, KC_EQL },
{ _______, KC_HOME, KC_END , BL_OFF , BL_ON , KC_F11 , _______, _______, _______, KC_F12 , KC_MINS, _______, _______, _______, _______},
{ _______, _______, _______, _______, _______, A_BSPC , _______, _______, _______, _______, _______, _______, _______, _______, _______},
},
[_SYMBOL] = LAYOUT_ortho_5x15( /* SYMBOL */
KC_F12 , KC_F1 , KC_F2 , KC_F3 , KC_F4 , KC_F5 , _______, _______, _______, KC_F6 , KC_F7 , KC_F8 , KC_F9 , KC_F10 , KC_F11 ,
KC_LBRC, KC_1 , KC_2 , KC_3 , KC_4 , KC_5 , _______, _______, _______, KC_6 , KC_7 , KC_8 , KC_9 , KC_0 , KC_RBRC,
_______, KC_EXLM, KC_AT , KC_HASH, KC_DLR , KC_PERC, _______, _______, _______, KC_CIRC, KC_AMPR, KC_ASTR, KC_LPRN, KC_RPRN, KC_EQL ,
_______, KC_HOME, KC_END , BL_OFF , BL_ON , KC_F11 , _______, _______, _______, KC_F12 , KC_MINS, _______, _______, _______, _______,
_______, _______, _______, _______, _______, A_BSPC , _______, _______, _______, _______, _______, _______, _______, _______, _______
),
[_NAV] = { /* NAVIGATION for Mac */
{ _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______},
{ _______, _______, _______, _______, _______, _______, _______, _______, _______, C_TAB , A_LEFT, KC_UP, A_RGHT , KC_DEL , _______},
{ _______, _______, _______, _______, _______, _______, _______, _______, _______, GSL , KC_LEFT, KC_DOWN, KC_RGHT, GSR , _______},
{ _______, _______, _______, _______, _______, _______, _______, _______, _______, G_TAB , ABSPC , KC_HOME, KC_END , G_GRV , _______},
{ RESET , _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______},
},
[_NAV] = LAYOUT_ortho_5x15( /* NAVIGATION for Mac */
_______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______,
_______, _______, _______, _______, _______, _______, _______, _______, _______, C_TAB , A_LEFT, KC_UP, A_RGHT , KC_DEL , _______,
_______, _______, _______, _______, _______, _______, _______, _______, _______, GSL , KC_LEFT, KC_DOWN, KC_RGHT, GSR , _______,
_______, _______, _______, _______, _______, _______, _______, _______, _______, G_TAB , A_BSPC , KC_HOME, KC_END , G_GRV , _______,
RESET , _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______
),
[_NAVPC] = { /* NAVIGATION FOR WINDOWS: replaces Alt with Control, GUI with Alt, and browser tab shortcuts*/
{ _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______},
{ _______, _______, _______, _______, _______, _______, _______, _______, _______, C_TAB , C_LEFT, KC_UP, C_RGHT , KC_DEL , _______},
{ _______, _______, _______, _______, _______, _______, _______, _______, _______, CTLPGUP, KC_LEFT, KC_DOWN, KC_RGHT, CTLPGDN, _______},
{ _______, _______, _______, _______, _______, _______, _______, _______, _______, A_TAB , CBSPC , KC_HOME, KC_END , _______, _______},
{ RESET , _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______},
}
[_NAVPC] = LAYOUT_ortho_5x15( /* NAVIGATION FOR WINDOWS: replaces Alt with Control, GUI with Alt, and browser tab shortcuts*/
_______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______,
_______, _______, _______, _______, _______, _______, _______, _______, _______, C_TAB , C_LEFT, KC_UP, C_RGHT , KC_DEL , _______,
_______, _______, _______, _______, _______, _______, _______, _______, _______, CTLPGUP, KC_LEFT, KC_DOWN, KC_RGHT, CTLPGDN, _______,
_______, _______, _______, _______, _______, _______, _______, _______, _______, A_TAB , C_BSPC , KC_HOME, KC_END , _______, _______,
RESET , _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______
)
};
// Shift vs capslock function. From bbaserdem's Planck keymap.

View File

@@ -1,4 +1,7 @@
# A Colemak layout for XD75 with both Mac and Windows layers.
# These two layers share momentary toggle access to a "Symbol" layer, which is modeled after my Planck layout.
# Each of the base Colemak layers have their own Navigation layers for the right hand to use arrows and shortcuts for both text editing and web browsing.
# The rules.mk file overrides the XD75's "BACKLIGHT_ENABLE" with YES and also adds tap dance functionality.
# XD75
This is a Colemak layout for XD75 with both Mac and Windows layers.
These two layers share momentary toggle access to a "Symbol" layer, which is modeled after my Planck layout (see planck/keymaps/davidrambo).
Each of the base Colemak layers have their own Navigation layers for the right hand to use arrows and shortcuts for both text editing and web browsing.
The rules.mk file overrides the XD75's "BACKLIGHT_ENABLE" with YES and also adds tap dance functionality.

View File

@@ -0,0 +1,127 @@
/* Bepo layout for ergodox EZ by Nicolas CARPi (deltablot.com) */
#include QMK_KEYBOARD_H
#include "keymap_bepo.h"
#include "keymap_french.h"
#define BEPO 0 // default layer, for bepo compatible systems
#define FNAV 1 // function / navigation / mouse layer
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
/* Keymap 0: default layer
*
* ,--------------------------------------------------. ,--------------------------------------------------.
* | $ | " | < | > | ( | ) | @ | | + | - | - | / | * | = | % |
* |--------+------+------+------+------+-------------| |------+------+------+------+------+------+--------|
* | TAB | B |E_ACUT| P | O |E_GRAV|Backsp| |CapsLo| ^ | V | D | L | J | Z |
* |--------+------+------+------+------+------| ace | | |------+------+------+------+------+--------|
* | W | A | U | I | E | , |------| |------| C | T | S | R | N | M |
* |--------+------+------+------+------+------| | | ESCAP------+------+------+------+------+--------|
* | SHIFT |E_CIRC | A_GRAV | Y | X | . | K | | | ' | Q | G | H | F | C_CEDIL|
* `--------+------+------+------+------+-------------,-------------. ,-------------`-------------+------+------+------+------+--------'
* |Ctrl|LSuper|LSuper| LSuper| LAlt| | PgUp | PgDwn| |BEPO| Delete | | AltGr| RSuper|RSuper|RCtrl| Enter|
* `----------------------------------' ,------|------|------| |------+------+------. `----------------------------------'
* | | |Insert| |L_Fnav| | |
* | Space|Shift |------| |------|RShift|Enter |
* | | |Mouse | | Fn | | |
* `--------------------' `--------------------'
* df is for temporary stuff and mo is for toggle (momentary)
* so mouse is to toggle the mouse mode
*/
[BEPO] = LAYOUT_ergodox(
/* Left hand */
BP_DOLLAR, BP_DQOT, BP_LGIL, BP_RGIL, BP_LPRN, BP_RPRN, BP_AT,
KC_TAB, BP_B, BP_E_ACUTE, BP_P, BP_O, BP_E_GRAVE, KC_BSPC,
BP_W, BP_A, BP_U, BP_I, BP_E, BP_COMMA,
KC_LSHIFT, BP_ECRC, BP_A_GRAVE, BP_Y, BP_X, BP_DOT, BP_K,
KC_LCTL, KC_LGUI, KC_LGUI, KC_LGUI, KC_LALT,
KC_PGUP, KC_PGDOWN,
KC_INS,
KC_SPC, KC_LSHIFT, DF(FNAV),
/* Right hand */
BP_PLUS, BP_MINUS, BP_MINUS, BP_SLASH, BP_ASTR, BP_EQUAL, BP_PERCENT,
KC_CAPSLOCK, BP_DCRC, BP_V, BP_D, BP_L, BP_J, BP_Z,
BP_C, BP_T, BP_S, BP_R, BP_N, BP_M,
KC_ESC, BP_APOS, BP_Q, BP_G, BP_H, BP_F, BP_CCED,
KC_ALGR, KC_RGUI, KC_RGUI, KC_RCTL, KC_ENTER,
DF(BEPO), KC_DEL,
DF(FNAV),
MO(FNAV), KC_RSHIFT, KC_ENTER),
/* Keymap 1: function / navigation / mouse layer
*
* ,--------------------------------------------------. ,--------------------------------------------------.
* | | F1 | F2 | F3 | F4 | F5 | F6 | | F7 | F8 | F9 | F10 | F11 | F12 | F12 |
* |--------+------+------+------+------+-------------| |------+------+------+------+------+------+--------|
* | | Next |LClick| Up |RClick| WhUp |Backspace| | | PgUp | Home | Up | End | F11 | |
* |--------+------+------+------+------+------| | | |------+------+------+------+------+--------|
* | | Prev | Left | Down | Right|WhDown|------| |------| Left | Down | Up | Right | F12 | |
* |--------+------+------+------+------+------| VolUp| | |------+------+------+------+------+--------|
* | Shift | Undo | Cut | Copy | Paste| | | | | | | | | | |
* `--------+------+------+------+------+-------------,-------------. ,-------------`-------------+------+------+------+------+--------'
* | ctrl | super | super | alt | | Home | End | | | | | | Alt | | |Ctrl | |
* `----------------------------------' ,------|------|------| |------+------+------. `----------------------------------'
* | | | | | | | |
* | | |------| |------| | |
* | | | | | | | |
* `--------------------' `--------------------'
*/
[FNAV] = LAYOUT_ergodox(
/* Left hand */
KC_NO, KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6,
KC_NO, KC_MS_BTN5, KC_MS_BTN1, KC_MS_UP, KC_MS_BTN2, KC_MS_WH_UP, KC_BSPC,
KC_NO, KC_MS_BTN4, KC_MS_LEFT, KC_MS_DOWN, KC_MS_RIGHT, KC_MS_WH_DOWN,
KC_LSHIFT, KC_UNDO, KC_CUT, KC_COPY, KC_PASTE, KC_NO, KC_VOLD,
KC_LCTL, KC_INS, KC_LGUI, KC_LGUI, KC_LALT,
KC_HOME, KC_END,
KC_TRNS,
KC_NO, KC_TRNS, KC_TRNS,
/* Right hand */
KC_F7, KC_F8, KC_F9, KC_F10, KC_F11, KC_F12, KC_F12,
KC_NO, KC_PGUP, KC_HOME, KC_UP, KC_END, KC_F11, KC_NO,
KC_LEFT, KC_DOWN, KC_UP, KC_RIGHT, KC_F12, KC_NO,
KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO, KC_NO,
KC_RALT, KC_TRNS, KC_TRNS, KC_RCTL, KC_NO,
KC_TRNS, KC_TRNS,
KC_TRNS,
KC_TRNS, KC_TRNS, KC_NO),
};
/* helper function to switch on of the right LED ON/OFF */
static void indicate_using_led(const uint8_t led, const bool enabled) {
if (enabled) {
ergodox_right_led_on(led);
} else {
ergodox_right_led_off(led);
}
}
/* Runs constantly in the background, in a loop */
void matrix_scan_user(void) {
/* red led for shift */
if (keyboard_report->mods & MOD_BIT(KC_LSFT) ||
((get_oneshot_mods() & MOD_BIT(KC_LSFT)) && !has_oneshot_mods_timed_out())) {
indicate_using_led(1, true);
} else {
indicate_using_led(1, false);
}
/* green led for alt */
if (keyboard_report->mods & MOD_BIT(KC_LALT) ||
((get_oneshot_mods() & MOD_BIT(KC_LALT)) && !has_oneshot_mods_timed_out())) {
indicate_using_led(2, true);
} else {
indicate_using_led(2, false);
}
/* blue led for function mode */
if (IS_LAYER_ON(FNAV)) {
indicate_using_led(3, true);
} else {
indicate_using_led(3, false);
}
};

View File

@@ -0,0 +1,66 @@
![layer0](https://i.imgur.com/vd4QLBf.png)
![layer1](https://i.imgur.com/eo101eD.png)
# BEPO keymap for the ErgoDox (alternate version)
This keymap has been made for the BEPO layout (https://bepo.fr), which is an ergonomic french keyboard layout based on Dvorak rules. As it's made for french people, the following of this readme will be in french.
Keyboard Maintainer: [Nicolas CARPi](https://github.com/NicolasCARPi)
Hardware Supported: Ergodox EZ
## Disposition BÉPO pour l'ErgoDox
Cette keymap a été adaptée de la keymap "bepo_csa" présente dans le dossier parent.
Certaines modifications ont été apportées pour ressembler un peu plus à une clavier traditionel:
* entrée sur la touche tout en bas à droite (comme la touche entrée du pavé numérique sur un clavier traditionnel)
* plusieurs touches "Super" pour faciliter son accès
Il y a deux layers, celui de base, et celui avec les flèches, les touches fonction et la souris (main gauche).
## Particularités
* Touches de repos des pouces : "espace" à gauche et "entrée" à droite.
* Touche Ctrl gauche accessible avec la paume de la main.
* Touche "w" placée sur la main gauche (j'ai toujours trouvé le "w" difficle d'accès sur un clavier bépo classique.
* Plusieurs touches F12.
* Les flèches sont disposées avec un déplacement à la VIM.
* Un mode souris permet d'utiliser la souris avec le clavier.
* Possibilité de changer de mode de manière temporaire ou permanente.
* Les leds s'allument avec SHIFT, ALT ou la touche function.
J'ai fait cette disposition pour mes besoins, à vous de la modifier pour les vôtres ;)
## Utilisation
### Pré-requis
Pour Archlinux, il est nécessaire d'installer ces paquets au préalable:
~~~bash
sudo pacman -S avr-gcc avr-libc teensy-loader-cli
~~~
Les paquets "avr" permettent de compiler le firmware, et teensy-loader permet de le charger sur le clavier.
### Compilation
~~~bash
# clone the repo
git clone https://github.com/qmk/qmk_firmware
# install submodules
make git-submodule
# compile this layout
make ergodox_ez:bepo_alt
~~~
### Chargement
~~~bash
teensy-loader-cli -w -mmcu=atmega32u4 -v ergodox_ez_bepo_alt.hex && sleep 6 && setxkbmap fr bepo
~~~
J'ai ajouté un sleep avant la commande pour remettre en bépo afin de laisser au clavier le temps de rebooter.

View File

@@ -0,0 +1,5 @@
# Having a file like this allows you to override Makefile definitions
# for your own particular keymap
SLEEP_LED_ENABLE = no # Breathing sleep LED during USB suspend
COMMAND_ENABLE = no # Commands for debug and configuration

View File

@@ -13,7 +13,6 @@
// #define RGB_MATRIX_KEYRELEASES // reacts to keyreleases (not recommened)
// #define RGB_DISABLE_AFTER_TIMEOUT 0 // number of ticks to wait until disabling effects
#define RGB_DISABLE_WHEN_USB_SUSPENDED true// turn off effects when suspended
// #define RGB_MATRIX_SKIP_FRAMES 1 // number of frames to skip when displaying animations (0 is full effect) if not defined defaults to 1
// #define RGB_MATRIX_MAXIMUM_BRIGHTNESS 200 // limits maximum brightness of LEDs to 200 out of 255. If not defined maximum brightness is set to 255
// #define EECONFIG_RGB_MATRIX (uint32_t *)16
#endif

View File

@@ -18,7 +18,6 @@
// #define RGB_MATRIX_KEYRELEASES // reacts to keyreleases (not recommened)
// #define RGB_DISABLE_AFTER_TIMEOUT 0 // number of ticks to wait until disabling effects
#define RGB_DISABLE_WHEN_USB_SUSPENDED true// turn off effects when suspended
// #define RGB_MATRIX_SKIP_FRAMES 1 // number of frames to skip when displaying animations (0 is full effect) if not defined defaults to 1
// #define RGB_MATRIX_MAXIMUM_BRIGHTNESS 200 // limits maximum brightness of LEDs to 200 out of 255. If not defined maximum brightness is set to 255
#define EECONFIG_RGB_MATRIX (uint32_t *)15
#endif

20
lib/lib8tion/LICENSE Normal file
View File

@@ -0,0 +1,20 @@
The MIT License (MIT)
Copyright (c) 2013 FastLED
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

242
lib/lib8tion/lib8tion.c Normal file
View File

@@ -0,0 +1,242 @@
#define FASTLED_INTERNAL
#include <stdint.h>
#define RAND16_SEED 1337
uint16_t rand16seed = RAND16_SEED;
// memset8, memcpy8, memmove8:
// optimized avr replacements for the standard "C" library
// routines memset, memcpy, and memmove.
//
// There are two techniques that make these routines
// faster than the standard avr-libc routines.
// First, the loops are unrolled 2X, meaning that
// the average loop overhead is cut in half.
// And second, the compare-and-branch at the bottom
// of each loop decrements the low byte of the
// counter, and if the carry is clear, it branches
// back up immediately. Only if the low byte math
// causes carry do we bother to decrement the high
// byte and check that result for carry as well.
// Results for a 100-byte buffer are 20-40% faster
// than standard avr-libc, at a cost of a few extra
// bytes of code.
#if defined(__AVR__)
//__attribute__ ((noinline))
void * memset8 ( void * ptr, uint8_t val, uint16_t num )
{
asm volatile(
" movw r26, %[ptr] \n\t"
" sbrs %A[num], 0 \n\t"
" rjmp Lseteven_%= \n\t"
" rjmp Lsetodd_%= \n\t"
"Lsetloop_%=: \n\t"
" st X+, %[val] \n\t"
"Lsetodd_%=: \n\t"
" st X+, %[val] \n\t"
"Lseteven_%=: \n\t"
" subi %A[num], 2 \n\t"
" brcc Lsetloop_%= \n\t"
" sbci %B[num], 0 \n\t"
" brcc Lsetloop_%= \n\t"
: [num] "+r" (num)
: [ptr] "r" (ptr),
[val] "r" (val)
: "memory"
);
return ptr;
}
//__attribute__ ((noinline))
void * memcpy8 ( void * dst, const void* src, uint16_t num )
{
asm volatile(
" movw r30, %[src] \n\t"
" movw r26, %[dst] \n\t"
" sbrs %A[num], 0 \n\t"
" rjmp Lcpyeven_%= \n\t"
" rjmp Lcpyodd_%= \n\t"
"Lcpyloop_%=: \n\t"
" ld __tmp_reg__, Z+ \n\t"
" st X+, __tmp_reg__ \n\t"
"Lcpyodd_%=: \n\t"
" ld __tmp_reg__, Z+ \n\t"
" st X+, __tmp_reg__ \n\t"
"Lcpyeven_%=: \n\t"
" subi %A[num], 2 \n\t"
" brcc Lcpyloop_%= \n\t"
" sbci %B[num], 0 \n\t"
" brcc Lcpyloop_%= \n\t"
: [num] "+r" (num)
: [src] "r" (src),
[dst] "r" (dst)
: "memory"
);
return dst;
}
//__attribute__ ((noinline))
void * memmove8 ( void * dst, const void* src, uint16_t num )
{
if( src > dst) {
// if src > dst then we can use the forward-stepping memcpy8
return memcpy8( dst, src, num);
} else {
// if src < dst then we have to step backward:
dst = (char*)dst + num;
src = (char*)src + num;
asm volatile(
" movw r30, %[src] \n\t"
" movw r26, %[dst] \n\t"
" sbrs %A[num], 0 \n\t"
" rjmp Lmoveven_%= \n\t"
" rjmp Lmovodd_%= \n\t"
"Lmovloop_%=: \n\t"
" ld __tmp_reg__, -Z \n\t"
" st -X, __tmp_reg__ \n\t"
"Lmovodd_%=: \n\t"
" ld __tmp_reg__, -Z \n\t"
" st -X, __tmp_reg__ \n\t"
"Lmoveven_%=: \n\t"
" subi %A[num], 2 \n\t"
" brcc Lmovloop_%= \n\t"
" sbci %B[num], 0 \n\t"
" brcc Lmovloop_%= \n\t"
: [num] "+r" (num)
: [src] "r" (src),
[dst] "r" (dst)
: "memory"
);
return dst;
}
}
#endif /* AVR */
#if 0
// TEST / VERIFICATION CODE ONLY BELOW THIS POINT
#include <Arduino.h>
#include "lib8tion.h"
void test1abs( int8_t i)
{
Serial.print("abs("); Serial.print(i); Serial.print(") = ");
int8_t j = abs8(i);
Serial.print(j); Serial.println(" ");
}
void testabs()
{
delay(5000);
for( int8_t q = -128; q != 127; q++) {
test1abs(q);
}
for(;;){};
}
void testmul8()
{
delay(5000);
byte r, c;
Serial.println("mul8:");
for( r = 0; r <= 20; r += 1) {
Serial.print(r); Serial.print(" : ");
for( c = 0; c <= 20; c += 1) {
byte t;
t = mul8( r, c);
Serial.print(t); Serial.print(' ');
}
Serial.println(' ');
}
Serial.println("done.");
for(;;){};
}
void testscale8()
{
delay(5000);
byte r, c;
Serial.println("scale8:");
for( r = 0; r <= 240; r += 10) {
Serial.print(r); Serial.print(" : ");
for( c = 0; c <= 240; c += 10) {
byte t;
t = scale8( r, c);
Serial.print(t); Serial.print(' ');
}
Serial.println(' ');
}
Serial.println(' ');
Serial.println("scale8_video:");
for( r = 0; r <= 100; r += 4) {
Serial.print(r); Serial.print(" : ");
for( c = 0; c <= 100; c += 4) {
byte t;
t = scale8_video( r, c);
Serial.print(t); Serial.print(' ');
}
Serial.println(' ');
}
Serial.println("done.");
for(;;){};
}
void testqadd8()
{
delay(5000);
byte r, c;
for( r = 0; r <= 240; r += 10) {
Serial.print(r); Serial.print(" : ");
for( c = 0; c <= 240; c += 10) {
byte t;
t = qadd8( r, c);
Serial.print(t); Serial.print(' ');
}
Serial.println(' ');
}
Serial.println("done.");
for(;;){};
}
void testnscale8x3()
{
delay(5000);
byte r, g, b, sc;
for( byte z = 0; z < 10; z++) {
r = random8(); g = random8(); b = random8(); sc = random8();
Serial.print("nscale8x3_video( ");
Serial.print(r); Serial.print(", ");
Serial.print(g); Serial.print(", ");
Serial.print(b); Serial.print(", ");
Serial.print(sc); Serial.print(") = [ ");
nscale8x3_video( r, g, b, sc);
Serial.print(r); Serial.print(", ");
Serial.print(g); Serial.print(", ");
Serial.print(b); Serial.print("]");
Serial.println(' ');
}
Serial.println("done.");
for(;;){};
}
#endif

934
lib/lib8tion/lib8tion.h Normal file
View File

@@ -0,0 +1,934 @@
#ifndef __INC_LIB8TION_H
#define __INC_LIB8TION_H
/*
Fast, efficient 8-bit math functions specifically
designed for high-performance LED programming.
Because of the AVR(Arduino) and ARM assembly language
implementations provided, using these functions often
results in smaller and faster code than the equivalent
program using plain "C" arithmetic and logic.
Included are:
- Saturating unsigned 8-bit add and subtract.
Instead of wrapping around if an overflow occurs,
these routines just 'clamp' the output at a maxumum
of 255, or a minimum of 0. Useful for adding pixel
values. E.g., qadd8( 200, 100) = 255.
qadd8( i, j) == MIN( (i + j), 0xFF )
qsub8( i, j) == MAX( (i - j), 0 )
- Saturating signed 8-bit ("7-bit") add.
qadd7( i, j) == MIN( (i + j), 0x7F)
- Scaling (down) of unsigned 8- and 16- bit values.
Scaledown value is specified in 1/256ths.
scale8( i, sc) == (i * sc) / 256
scale16by8( i, sc) == (i * sc) / 256
Example: scaling a 0-255 value down into a
range from 0-99:
downscaled = scale8( originalnumber, 100);
A special version of scale8 is provided for scaling
LED brightness values, to make sure that they don't
accidentally scale down to total black at low
dimming levels, since that would look wrong:
scale8_video( i, sc) = ((i * sc) / 256) +? 1
Example: reducing an LED brightness by a
dimming factor:
new_bright = scale8_video( orig_bright, dimming);
- Fast 8- and 16- bit unsigned random numbers.
Significantly faster than Arduino random(), but
also somewhat less random. You can add entropy.
random8() == random from 0..255
random8( n) == random from 0..(N-1)
random8( n, m) == random from N..(M-1)
random16() == random from 0..65535
random16( n) == random from 0..(N-1)
random16( n, m) == random from N..(M-1)
random16_set_seed( k) == seed = k
random16_add_entropy( k) == seed += k
- Absolute value of a signed 8-bit value.
abs8( i) == abs( i)
- 8-bit math operations which return 8-bit values.
These are provided mostly for completeness,
not particularly for performance.
mul8( i, j) == (i * j) & 0xFF
add8( i, j) == (i + j) & 0xFF
sub8( i, j) == (i - j) & 0xFF
- Fast 16-bit approximations of sin and cos.
Input angle is a uint16_t from 0-65535.
Output is a signed int16_t from -32767 to 32767.
sin16( x) == sin( (x/32768.0) * pi) * 32767
cos16( x) == cos( (x/32768.0) * pi) * 32767
Accurate to more than 99% in all cases.
- Fast 8-bit approximations of sin and cos.
Input angle is a uint8_t from 0-255.
Output is an UNsigned uint8_t from 0 to 255.
sin8( x) == (sin( (x/128.0) * pi) * 128) + 128
cos8( x) == (cos( (x/128.0) * pi) * 128) + 128
Accurate to within about 2%.
- Fast 8-bit "easing in/out" function.
ease8InOutCubic(x) == 3(x^i) - 2(x^3)
ease8InOutApprox(x) ==
faster, rougher, approximation of cubic easing
ease8InOutQuad(x) == quadratic (vs cubic) easing
- Cubic, Quadratic, and Triangle wave functions.
Input is a uint8_t representing phase withing the wave,
similar to how sin8 takes an angle 'theta'.
Output is a uint8_t representing the amplitude of
the wave at that point.
cubicwave8( x)
quadwave8( x)
triwave8( x)
- Square root for 16-bit integers. About three times
faster and five times smaller than Arduino's built-in
generic 32-bit sqrt routine.
sqrt16( uint16_t x ) == sqrt( x)
- Dimming and brightening functions for 8-bit
light values.
dim8_video( x) == scale8_video( x, x)
dim8_raw( x) == scale8( x, x)
dim8_lin( x) == (x<128) ? ((x+1)/2) : scale8(x,x)
brighten8_video( x) == 255 - dim8_video( 255 - x)
brighten8_raw( x) == 255 - dim8_raw( 255 - x)
brighten8_lin( x) == 255 - dim8_lin( 255 - x)
The dimming functions in particular are suitable
for making LED light output appear more 'linear'.
- Linear interpolation between two values, with the
fraction between them expressed as an 8- or 16-bit
fixed point fraction (fract8 or fract16).
lerp8by8( fromU8, toU8, fract8 )
lerp16by8( fromU16, toU16, fract8 )
lerp15by8( fromS16, toS16, fract8 )
== from + (( to - from ) * fract8) / 256)
lerp16by16( fromU16, toU16, fract16 )
== from + (( to - from ) * fract16) / 65536)
map8( in, rangeStart, rangeEnd)
== map( in, 0, 255, rangeStart, rangeEnd);
- Optimized memmove, memcpy, and memset, that are
faster than standard avr-libc 1.8.
memmove8( dest, src, bytecount)
memcpy8( dest, src, bytecount)
memset8( buf, value, bytecount)
- Beat generators which return sine or sawtooth
waves in a specified number of Beats Per Minute.
Sine wave beat generators can specify a low and
high range for the output. Sawtooth wave beat
generators always range 0-255 or 0-65535.
beatsin8( BPM, low8, high8)
= (sine(beatphase) * (high8-low8)) + low8
beatsin16( BPM, low16, high16)
= (sine(beatphase) * (high16-low16)) + low16
beatsin88( BPM88, low16, high16)
= (sine(beatphase) * (high16-low16)) + low16
beat8( BPM) = 8-bit repeating sawtooth wave
beat16( BPM) = 16-bit repeating sawtooth wave
beat88( BPM88) = 16-bit repeating sawtooth wave
BPM is beats per minute in either simple form
e.g. 120, or Q8.8 fixed-point form.
BPM88 is beats per minute in ONLY Q8.8 fixed-point
form.
Lib8tion is pronounced like 'libation': lie-BAY-shun
*/
#include <stdint.h>
#define LIB8STATIC __attribute__ ((unused)) static inline
#define LIB8STATIC_ALWAYS_INLINE __attribute__ ((always_inline)) static inline
#if !defined(__AVR__)
#include <string.h>
// for memmove, memcpy, and memset if not defined here
#endif
#if defined(__arm__)
#if defined(FASTLED_TEENSY3)
// Can use Cortex M4 DSP instructions
#define QADD8_C 0
#define QADD7_C 0
#define QADD8_ARM_DSP_ASM 1
#define QADD7_ARM_DSP_ASM 1
#else
// Generic ARM
#define QADD8_C 1
#define QADD7_C 1
#endif
#define QSUB8_C 1
#define SCALE8_C 1
#define SCALE16BY8_C 1
#define SCALE16_C 1
#define ABS8_C 1
#define MUL8_C 1
#define QMUL8_C 1
#define ADD8_C 1
#define SUB8_C 1
#define EASE8_C 1
#define AVG8_C 1
#define AVG7_C 1
#define AVG16_C 1
#define AVG15_C 1
#define BLEND8_C 1
#elif defined(__AVR__)
// AVR ATmega and friends Arduino
#define QADD8_C 0
#define QADD7_C 0
#define QSUB8_C 0
#define ABS8_C 0
#define ADD8_C 0
#define SUB8_C 0
#define AVG8_C 0
#define AVG7_C 0
#define AVG16_C 0
#define AVG15_C 0
#define QADD8_AVRASM 1
#define QADD7_AVRASM 1
#define QSUB8_AVRASM 1
#define ABS8_AVRASM 1
#define ADD8_AVRASM 1
#define SUB8_AVRASM 1
#define AVG8_AVRASM 1
#define AVG7_AVRASM 1
#define AVG16_AVRASM 1
#define AVG15_AVRASM 1
// Note: these require hardware MUL instruction
// -- sorry, ATtiny!
#if !defined(LIB8_ATTINY)
#define SCALE8_C 0
#define SCALE16BY8_C 0
#define SCALE16_C 0
#define MUL8_C 0
#define QMUL8_C 0
#define EASE8_C 0
#define BLEND8_C 0
#define SCALE8_AVRASM 1
#define SCALE16BY8_AVRASM 1
#define SCALE16_AVRASM 1
#define MUL8_AVRASM 1
#define QMUL8_AVRASM 1
#define EASE8_AVRASM 1
#define CLEANUP_R1_AVRASM 1
#define BLEND8_AVRASM 1
#else
// On ATtiny, we just use C implementations
#define SCALE8_C 1
#define SCALE16BY8_C 1
#define SCALE16_C 1
#define MUL8_C 1
#define QMUL8_C 1
#define EASE8_C 1
#define BLEND8_C 1
#define SCALE8_AVRASM 0
#define SCALE16BY8_AVRASM 0
#define SCALE16_AVRASM 0
#define MUL8_AVRASM 0
#define QMUL8_AVRASM 0
#define EASE8_AVRASM 0
#define BLEND8_AVRASM 0
#endif
#else
// unspecified architecture, so
// no ASM, everything in C
#define QADD8_C 1
#define QADD7_C 1
#define QSUB8_C 1
#define SCALE8_C 1
#define SCALE16BY8_C 1
#define SCALE16_C 1
#define ABS8_C 1
#define MUL8_C 1
#define QMUL8_C 1
#define ADD8_C 1
#define SUB8_C 1
#define EASE8_C 1
#define AVG8_C 1
#define AVG7_C 1
#define AVG16_C 1
#define AVG15_C 1
#define BLEND8_C 1
#endif
///@defgroup lib8tion Fast math functions
///A variety of functions for working with numbers.
///@{
///////////////////////////////////////////////////////////////////////
//
// typdefs for fixed-point fractional types.
//
// sfract7 should be interpreted as signed 128ths.
// fract8 should be interpreted as unsigned 256ths.
// sfract15 should be interpreted as signed 32768ths.
// fract16 should be interpreted as unsigned 65536ths.
//
// Example: if a fract8 has the value "64", that should be interpreted
// as 64/256ths, or one-quarter.
//
//
// fract8 range is 0 to 0.99609375
// in steps of 0.00390625
//
// sfract7 range is -0.9921875 to 0.9921875
// in steps of 0.0078125
//
// fract16 range is 0 to 0.99998474121
// in steps of 0.00001525878
//
// sfract15 range is -0.99996948242 to 0.99996948242
// in steps of 0.00003051757
//
/// ANSI unsigned short _Fract. range is 0 to 0.99609375
/// in steps of 0.00390625
typedef uint8_t fract8; ///< ANSI: unsigned short _Fract
/// ANSI: signed short _Fract. range is -0.9921875 to 0.9921875
/// in steps of 0.0078125
typedef int8_t sfract7; ///< ANSI: signed short _Fract
/// ANSI: unsigned _Fract. range is 0 to 0.99998474121
/// in steps of 0.00001525878
typedef uint16_t fract16; ///< ANSI: unsigned _Fract
/// ANSI: signed _Fract. range is -0.99996948242 to 0.99996948242
/// in steps of 0.00003051757
typedef int16_t sfract15; ///< ANSI: signed _Fract
// accumXY types should be interpreted as X bits of integer,
// and Y bits of fraction.
// E.g., accum88 has 8 bits of int, 8 bits of fraction
typedef uint16_t accum88; ///< ANSI: unsigned short _Accum. 8 bits int, 8 bits fraction
typedef int16_t saccum78; ///< ANSI: signed short _Accum. 7 bits int, 8 bits fraction
typedef uint32_t accum1616;///< ANSI: signed _Accum. 16 bits int, 16 bits fraction
typedef int32_t saccum1516;///< ANSI: signed _Accum. 15 bits int, 16 bits fraction
typedef uint16_t accum124; ///< no direct ANSI counterpart. 12 bits int, 4 bits fraction
typedef int32_t saccum114;///< no direct ANSI counterpart. 1 bit int, 14 bits fraction
#include "math8.h"
#include "scale8.h"
#include "random8.h"
#include "trig8.h"
///////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////
//
// float-to-fixed and fixed-to-float conversions
//
// Note that anything involving a 'float' on AVR will be slower.
/// sfract15ToFloat: conversion from sfract15 fixed point to
/// IEEE754 32-bit float.
LIB8STATIC float sfract15ToFloat( sfract15 y)
{
return y / 32768.0;
}
/// conversion from IEEE754 float in the range (-1,1)
/// to 16-bit fixed point. Note that the extremes of
/// one and negative one are NOT representable. The
/// representable range is basically
LIB8STATIC sfract15 floatToSfract15( float f)
{
return f * 32768.0;
}
///////////////////////////////////////////////////////////////////////
//
// memmove8, memcpy8, and memset8:
// alternatives to memmove, memcpy, and memset that are
// faster on AVR than standard avr-libc 1.8
#if defined(__AVR__)
void * memmove8( void * dst, const void * src, uint16_t num );
void * memcpy8 ( void * dst, const void * src, uint16_t num ) __attribute__ ((noinline));
void * memset8 ( void * ptr, uint8_t value, uint16_t num ) __attribute__ ((noinline)) ;
#else
// on non-AVR platforms, these names just call standard libc.
#define memmove8 memmove
#define memcpy8 memcpy
#define memset8 memset
#endif
///////////////////////////////////////////////////////////////////////
//
// linear interpolation, such as could be used for Perlin noise, etc.
//
// A note on the structure of the lerp functions:
// The cases for b>a and b<=a are handled separately for
// speed: without knowing the relative order of a and b,
// the value (a-b) might be overflow the width of a or b,
// and have to be promoted to a wider, slower type.
// To avoid that, we separate the two cases, and are able
// to do all the math in the same width as the arguments,
// which is much faster and smaller on AVR.
/// linear interpolation between two unsigned 8-bit values,
/// with 8-bit fraction
LIB8STATIC uint8_t lerp8by8( uint8_t a, uint8_t b, fract8 frac)
{
uint8_t result;
if( b > a) {
uint8_t delta = b - a;
uint8_t scaled = scale8( delta, frac);
result = a + scaled;
} else {
uint8_t delta = a - b;
uint8_t scaled = scale8( delta, frac);
result = a - scaled;
}
return result;
}
/// linear interpolation between two unsigned 16-bit values,
/// with 16-bit fraction
LIB8STATIC uint16_t lerp16by16( uint16_t a, uint16_t b, fract16 frac)
{
uint16_t result;
if( b > a ) {
uint16_t delta = b - a;
uint16_t scaled = scale16(delta, frac);
result = a + scaled;
} else {
uint16_t delta = a - b;
uint16_t scaled = scale16( delta, frac);
result = a - scaled;
}
return result;
}
/// linear interpolation between two unsigned 16-bit values,
/// with 8-bit fraction
LIB8STATIC uint16_t lerp16by8( uint16_t a, uint16_t b, fract8 frac)
{
uint16_t result;
if( b > a) {
uint16_t delta = b - a;
uint16_t scaled = scale16by8( delta, frac);
result = a + scaled;
} else {
uint16_t delta = a - b;
uint16_t scaled = scale16by8( delta, frac);
result = a - scaled;
}
return result;
}
/// linear interpolation between two signed 15-bit values,
/// with 8-bit fraction
LIB8STATIC int16_t lerp15by8( int16_t a, int16_t b, fract8 frac)
{
int16_t result;
if( b > a) {
uint16_t delta = b - a;
uint16_t scaled = scale16by8( delta, frac);
result = a + scaled;
} else {
uint16_t delta = a - b;
uint16_t scaled = scale16by8( delta, frac);
result = a - scaled;
}
return result;
}
/// linear interpolation between two signed 15-bit values,
/// with 8-bit fraction
LIB8STATIC int16_t lerp15by16( int16_t a, int16_t b, fract16 frac)
{
int16_t result;
if( b > a) {
uint16_t delta = b - a;
uint16_t scaled = scale16( delta, frac);
result = a + scaled;
} else {
uint16_t delta = a - b;
uint16_t scaled = scale16( delta, frac);
result = a - scaled;
}
return result;
}
/// map8: map from one full-range 8-bit value into a narrower
/// range of 8-bit values, possibly a range of hues.
///
/// E.g. map myValue into a hue in the range blue..purple..pink..red
/// hue = map8( myValue, HUE_BLUE, HUE_RED);
///
/// Combines nicely with the waveform functions (like sin8, etc)
/// to produce continuous hue gradients back and forth:
///
/// hue = map8( sin8( myValue), HUE_BLUE, HUE_RED);
///
/// Mathematically simiar to lerp8by8, but arguments are more
/// like Arduino's "map"; this function is similar to
///
/// map( in, 0, 255, rangeStart, rangeEnd)
///
/// but faster and specifically designed for 8-bit values.
LIB8STATIC uint8_t map8( uint8_t in, uint8_t rangeStart, uint8_t rangeEnd)
{
uint8_t rangeWidth = rangeEnd - rangeStart;
uint8_t out = scale8( in, rangeWidth);
out += rangeStart;
return out;
}
///////////////////////////////////////////////////////////////////////
//
// easing functions; see http://easings.net
//
/// ease8InOutQuad: 8-bit quadratic ease-in / ease-out function
/// Takes around 13 cycles on AVR
#if EASE8_C == 1
LIB8STATIC uint8_t ease8InOutQuad( uint8_t i)
{
uint8_t j = i;
if( j & 0x80 ) {
j = 255 - j;
}
uint8_t jj = scale8( j, j);
uint8_t jj2 = jj << 1;
if( i & 0x80 ) {
jj2 = 255 - jj2;
}
return jj2;
}
#elif EASE8_AVRASM == 1
// This AVR asm version of ease8InOutQuad preserves one more
// low-bit of precision than the C version, and is also slightly
// smaller and faster.
LIB8STATIC uint8_t ease8InOutQuad(uint8_t val) {
uint8_t j=val;
asm volatile (
"sbrc %[val], 7 \n"
"com %[j] \n"
"mul %[j], %[j] \n"
"add r0, %[j] \n"
"ldi %[j], 0 \n"
"adc %[j], r1 \n"
"lsl r0 \n" // carry = high bit of low byte of mul product
"rol %[j] \n" // j = (j * 2) + carry // preserve add'l bit of precision
"sbrc %[val], 7 \n"
"com %[j] \n"
"clr __zero_reg__ \n"
: [j] "+&a" (j)
: [val] "a" (val)
: "r0", "r1"
);
return j;
}
#else
#error "No implementation for ease8InOutQuad available."
#endif
/// ease16InOutQuad: 16-bit quadratic ease-in / ease-out function
// C implementation at this point
LIB8STATIC uint16_t ease16InOutQuad( uint16_t i)
{
uint16_t j = i;
if( j & 0x8000 ) {
j = 65535 - j;
}
uint16_t jj = scale16( j, j);
uint16_t jj2 = jj << 1;
if( i & 0x8000 ) {
jj2 = 65535 - jj2;
}
return jj2;
}
/// ease8InOutCubic: 8-bit cubic ease-in / ease-out function
/// Takes around 18 cycles on AVR
LIB8STATIC fract8 ease8InOutCubic( fract8 i)
{
uint8_t ii = scale8_LEAVING_R1_DIRTY( i, i);
uint8_t iii = scale8_LEAVING_R1_DIRTY( ii, i);
uint16_t r1 = (3 * (uint16_t)(ii)) - ( 2 * (uint16_t)(iii));
/* the code generated for the above *'s automatically
cleans up R1, so there's no need to explicitily call
cleanup_R1(); */
uint8_t result = r1;
// if we got "256", return 255:
if( r1 & 0x100 ) {
result = 255;
}
return result;
}
/// ease8InOutApprox: fast, rough 8-bit ease-in/ease-out function
/// shaped approximately like 'ease8InOutCubic',
/// it's never off by more than a couple of percent
/// from the actual cubic S-curve, and it executes
/// more than twice as fast. Use when the cycles
/// are more important than visual smoothness.
/// Asm version takes around 7 cycles on AVR.
#if EASE8_C == 1
LIB8STATIC fract8 ease8InOutApprox( fract8 i)
{
if( i < 64) {
// start with slope 0.5
i /= 2;
} else if( i > (255 - 64)) {
// end with slope 0.5
i = 255 - i;
i /= 2;
i = 255 - i;
} else {
// in the middle, use slope 192/128 = 1.5
i -= 64;
i += (i / 2);
i += 32;
}
return i;
}
#elif EASE8_AVRASM == 1
LIB8STATIC uint8_t ease8InOutApprox( fract8 i)
{
// takes around 7 cycles on AVR
asm volatile (
" subi %[i], 64 \n\t"
" cpi %[i], 128 \n\t"
" brcc Lshift_%= \n\t"
// middle case
" mov __tmp_reg__, %[i] \n\t"
" lsr __tmp_reg__ \n\t"
" add %[i], __tmp_reg__ \n\t"
" subi %[i], 224 \n\t"
" rjmp Ldone_%= \n\t"
// start or end case
"Lshift_%=: \n\t"
" lsr %[i] \n\t"
" subi %[i], 96 \n\t"
"Ldone_%=: \n\t"
: [i] "+&a" (i)
:
: "r0", "r1"
);
return i;
}
#else
#error "No implementation for ease8 available."
#endif
/// triwave8: triangle (sawtooth) wave generator. Useful for
/// turning a one-byte ever-increasing value into a
/// one-byte value that oscillates up and down.
///
/// input output
/// 0..127 0..254 (positive slope)
/// 128..255 254..0 (negative slope)
///
/// On AVR this function takes just three cycles.
///
LIB8STATIC uint8_t triwave8(uint8_t in)
{
if( in & 0x80) {
in = 255 - in;
}
uint8_t out = in << 1;
return out;
}
// quadwave8 and cubicwave8: S-shaped wave generators (like 'sine').
// Useful for turning a one-byte 'counter' value into a
// one-byte oscillating value that moves smoothly up and down,
// with an 'acceleration' and 'deceleration' curve.
//
// These are even faster than 'sin8', and have
// slightly different curve shapes.
//
/// quadwave8: quadratic waveform generator. Spends just a little more
/// time at the limits than 'sine' does.
LIB8STATIC uint8_t quadwave8(uint8_t in)
{
return ease8InOutQuad( triwave8( in));
}
/// cubicwave8: cubic waveform generator. Spends visibly more time
/// at the limits than 'sine' does.
LIB8STATIC uint8_t cubicwave8(uint8_t in)
{
return ease8InOutCubic( triwave8( in));
}
/// squarewave8: square wave generator. Useful for
/// turning a one-byte ever-increasing value
/// into a one-byte value that is either 0 or 255.
/// The width of the output 'pulse' is
/// determined by the pulsewidth argument:
///
///~~~
/// If pulsewidth is 255, output is always 255.
/// If pulsewidth < 255, then
/// if input < pulsewidth then output is 255
/// if input >= pulsewidth then output is 0
///~~~
///
/// the output looking like:
///
///~~~
/// 255 +--pulsewidth--+
/// . | |
/// 0 0 +--------(256-pulsewidth)--------
///~~~
///
/// @param in
/// @param pulsewidth
/// @returns square wave output
LIB8STATIC uint8_t squarewave8( uint8_t in, uint8_t pulsewidth)
{
if( in < pulsewidth || (pulsewidth == 255)) {
return 255;
} else {
return 0;
}
}
// Beat generators - These functions produce waves at a given
// number of 'beats per minute'. Internally, they use
// the Arduino function 'millis' to track elapsed time.
// Accuracy is a bit better than one part in a thousand.
//
// beat8( BPM ) returns an 8-bit value that cycles 'BPM' times
// per minute, rising from 0 to 255, resetting to zero,
// rising up again, etc.. The output of this function
// is suitable for feeding directly into sin8, and cos8,
// triwave8, quadwave8, and cubicwave8.
// beat16( BPM ) returns a 16-bit value that cycles 'BPM' times
// per minute, rising from 0 to 65535, resetting to zero,
// rising up again, etc. The output of this function is
// suitable for feeding directly into sin16 and cos16.
// beat88( BPM88) is the same as beat16, except that the BPM88 argument
// MUST be in Q8.8 fixed point format, e.g. 120BPM must
// be specified as 120*256 = 30720.
// beatsin8( BPM, uint8_t low, uint8_t high) returns an 8-bit value that
// rises and falls in a sine wave, 'BPM' times per minute,
// between the values of 'low' and 'high'.
// beatsin16( BPM, uint16_t low, uint16_t high) returns a 16-bit value
// that rises and falls in a sine wave, 'BPM' times per
// minute, between the values of 'low' and 'high'.
// beatsin88( BPM88, ...) is the same as beatsin16, except that the
// BPM88 argument MUST be in Q8.8 fixed point format,
// e.g. 120BPM must be specified as 120*256 = 30720.
//
// BPM can be supplied two ways. The simpler way of specifying BPM is as
// a simple 8-bit integer from 1-255, (e.g., "120").
// The more sophisticated way of specifying BPM allows for fractional
// "Q8.8" fixed point number (an 'accum88') with an 8-bit integer part and
// an 8-bit fractional part. The easiest way to construct this is to multiply
// a floating point BPM value (e.g. 120.3) by 256, (e.g. resulting in 30796
// in this case), and pass that as the 16-bit BPM argument.
// "BPM88" MUST always be specified in Q8.8 format.
//
// Originally designed to make an entire animation project pulse with brightness.
// For that effect, add this line just above your existing call to "FastLED.show()":
//
// uint8_t bright = beatsin8( 60 /*BPM*/, 192 /*dimmest*/, 255 /*brightest*/ ));
// FastLED.setBrightness( bright );
// FastLED.show();
//
// The entire animation will now pulse between brightness 192 and 255 once per second.
// The beat generators need access to a millisecond counter.
// On Arduino, this is "millis()". On other platforms, you'll
// need to provide a function with this signature:
// uint32_t get_millisecond_timer();
// that provides similar functionality.
// You can also force use of the get_millisecond_timer function
// by #defining USE_GET_MILLISECOND_TIMER.
#if (defined(ARDUINO) || defined(SPARK) || defined(FASTLED_HAS_MILLIS)) && !defined(USE_GET_MILLISECOND_TIMER)
// Forward declaration of Arduino function 'millis'.
//uint32_t millis();
#define GET_MILLIS millis
#else
uint32_t get_millisecond_timer(void);
#define GET_MILLIS get_millisecond_timer
#endif
// beat16 generates a 16-bit 'sawtooth' wave at a given BPM,
/// with BPM specified in Q8.8 fixed-point format; e.g.
/// for this function, 120 BPM MUST BE specified as
/// 120*256 = 30720.
/// If you just want to specify "120", use beat16 or beat8.
LIB8STATIC uint16_t beat88( accum88 beats_per_minute_88, uint32_t timebase)
{
// BPM is 'beats per minute', or 'beats per 60000ms'.
// To avoid using the (slower) division operator, we
// want to convert 'beats per 60000ms' to 'beats per 65536ms',
// and then use a simple, fast bit-shift to divide by 65536.
//
// The ratio 65536:60000 is 279.620266667:256; we'll call it 280:256.
// The conversion is accurate to about 0.05%, more or less,
// e.g. if you ask for "120 BPM", you'll get about "119.93".
return (((GET_MILLIS()) - timebase) * beats_per_minute_88 * 280) >> 16;
}
/// beat16 generates a 16-bit 'sawtooth' wave at a given BPM
LIB8STATIC uint16_t beat16( accum88 beats_per_minute, uint32_t timebase)
{
// Convert simple 8-bit BPM's to full Q8.8 accum88's if needed
if( beats_per_minute < 256) beats_per_minute <<= 8;
return beat88(beats_per_minute, timebase);
}
/// beat8 generates an 8-bit 'sawtooth' wave at a given BPM
LIB8STATIC uint8_t beat8( accum88 beats_per_minute, uint32_t timebase)
{
return beat16( beats_per_minute, timebase) >> 8;
}
/// beatsin88 generates a 16-bit sine wave at a given BPM,
/// that oscillates within a given range.
/// For this function, BPM MUST BE SPECIFIED as
/// a Q8.8 fixed-point value; e.g. 120BPM must be
/// specified as 120*256 = 30720.
/// If you just want to specify "120", use beatsin16 or beatsin8.
LIB8STATIC uint16_t beatsin88( accum88 beats_per_minute_88, uint16_t lowest, uint16_t highest, uint32_t timebase, uint16_t phase_offset)
{
uint16_t beat = beat88( beats_per_minute_88, timebase);
uint16_t beatsin = (sin16( beat + phase_offset) + 32768);
uint16_t rangewidth = highest - lowest;
uint16_t scaledbeat = scale16( beatsin, rangewidth);
uint16_t result = lowest + scaledbeat;
return result;
}
/// beatsin16 generates a 16-bit sine wave at a given BPM,
/// that oscillates within a given range.
LIB8STATIC uint16_t beatsin16(accum88 beats_per_minute, uint16_t lowest, uint16_t highest, uint32_t timebase, uint16_t phase_offset)
{
uint16_t beat = beat16( beats_per_minute, timebase);
uint16_t beatsin = (sin16( beat + phase_offset) + 32768);
uint16_t rangewidth = highest - lowest;
uint16_t scaledbeat = scale16( beatsin, rangewidth);
uint16_t result = lowest + scaledbeat;
return result;
}
/// beatsin8 generates an 8-bit sine wave at a given BPM,
/// that oscillates within a given range.
LIB8STATIC uint8_t beatsin8( accum88 beats_per_minute, uint8_t lowest, uint8_t highest, uint32_t timebase, uint8_t phase_offset)
{
uint8_t beat = beat8( beats_per_minute, timebase);
uint8_t beatsin = sin8( beat + phase_offset);
uint8_t rangewidth = highest - lowest;
uint8_t scaledbeat = scale8( beatsin, rangewidth);
uint8_t result = lowest + scaledbeat;
return result;
}
/// Return the current seconds since boot in a 16-bit value. Used as part of the
/// "every N time-periods" mechanism
LIB8STATIC uint16_t seconds16(void)
{
uint32_t ms = GET_MILLIS();
uint16_t s16;
s16 = ms / 1000;
return s16;
}
/// Return the current minutes since boot in a 16-bit value. Used as part of the
/// "every N time-periods" mechanism
LIB8STATIC uint16_t minutes16(void)
{
uint32_t ms = GET_MILLIS();
uint16_t m16;
m16 = (ms / (60000L)) & 0xFFFF;
return m16;
}
/// Return the current hours since boot in an 8-bit value. Used as part of the
/// "every N time-periods" mechanism
LIB8STATIC uint8_t hours8(void)
{
uint32_t ms = GET_MILLIS();
uint8_t h8;
h8 = (ms / (3600000L)) & 0xFF;
return h8;
}
///@}
#endif

552
lib/lib8tion/math8.h Normal file
View File

@@ -0,0 +1,552 @@
#ifndef __INC_LIB8TION_MATH_H
#define __INC_LIB8TION_MATH_H
#include "scale8.h"
///@ingroup lib8tion
///@defgroup Math Basic math operations
/// Fast, efficient 8-bit math functions specifically
/// designed for high-performance LED programming.
///
/// Because of the AVR(Arduino) and ARM assembly language
/// implementations provided, using these functions often
/// results in smaller and faster code than the equivalent
/// program using plain "C" arithmetic and logic.
///@{
/// add one byte to another, saturating at 0xFF
/// @param i - first byte to add
/// @param j - second byte to add
/// @returns the sum of i & j, capped at 0xFF
LIB8STATIC_ALWAYS_INLINE uint8_t qadd8( uint8_t i, uint8_t j)
{
#if QADD8_C == 1
uint16_t t = i + j;
if (t > 255) t = 255;
return t;
#elif QADD8_AVRASM == 1
asm volatile(
/* First, add j to i, conditioning the C flag */
"add %0, %1 \n\t"
/* Now test the C flag.
If C is clear, we branch around a load of 0xFF into i.
If C is set, we go ahead and load 0xFF into i.
*/
"brcc L_%= \n\t"
"ldi %0, 0xFF \n\t"
"L_%=: "
: "+a" (i)
: "a" (j) );
return i;
#elif QADD8_ARM_DSP_ASM == 1
asm volatile( "uqadd8 %0, %0, %1" : "+r" (i) : "r" (j));
return i;
#else
#error "No implementation for qadd8 available."
#endif
}
/// Add one byte to another, saturating at 0x7F
/// @param i - first byte to add
/// @param j - second byte to add
/// @returns the sum of i & j, capped at 0xFF
LIB8STATIC_ALWAYS_INLINE int8_t qadd7( int8_t i, int8_t j)
{
#if QADD7_C == 1
int16_t t = i + j;
if (t > 127) t = 127;
return t;
#elif QADD7_AVRASM == 1
asm volatile(
/* First, add j to i, conditioning the V flag */
"add %0, %1 \n\t"
/* Now test the V flag.
If V is clear, we branch around a load of 0x7F into i.
If V is set, we go ahead and load 0x7F into i.
*/
"brvc L_%= \n\t"
"ldi %0, 0x7F \n\t"
"L_%=: "
: "+a" (i)
: "a" (j) );
return i;
#elif QADD7_ARM_DSP_ASM == 1
asm volatile( "qadd8 %0, %0, %1" : "+r" (i) : "r" (j));
return i;
#else
#error "No implementation for qadd7 available."
#endif
}
/// subtract one byte from another, saturating at 0x00
/// @returns i - j with a floor of 0
LIB8STATIC_ALWAYS_INLINE uint8_t qsub8( uint8_t i, uint8_t j)
{
#if QSUB8_C == 1
int16_t t = i - j;
if (t < 0) t = 0;
return t;
#elif QSUB8_AVRASM == 1
asm volatile(
/* First, subtract j from i, conditioning the C flag */
"sub %0, %1 \n\t"
/* Now test the C flag.
If C is clear, we branch around a load of 0x00 into i.
If C is set, we go ahead and load 0x00 into i.
*/
"brcc L_%= \n\t"
"ldi %0, 0x00 \n\t"
"L_%=: "
: "+a" (i)
: "a" (j) );
return i;
#else
#error "No implementation for qsub8 available."
#endif
}
/// add one byte to another, with one byte result
LIB8STATIC_ALWAYS_INLINE uint8_t add8( uint8_t i, uint8_t j)
{
#if ADD8_C == 1
uint16_t t = i + j;
return t;
#elif ADD8_AVRASM == 1
// Add j to i, period.
asm volatile( "add %0, %1" : "+a" (i) : "a" (j));
return i;
#else
#error "No implementation for add8 available."
#endif
}
/// add one byte to another, with one byte result
LIB8STATIC_ALWAYS_INLINE uint16_t add8to16( uint8_t i, uint16_t j)
{
#if ADD8_C == 1
uint16_t t = i + j;
return t;
#elif ADD8_AVRASM == 1
// Add i(one byte) to j(two bytes)
asm volatile( "add %A[j], %[i] \n\t"
"adc %B[j], __zero_reg__ \n\t"
: [j] "+a" (j)
: [i] "a" (i)
);
return i;
#else
#error "No implementation for add8to16 available."
#endif
}
/// subtract one byte from another, 8-bit result
LIB8STATIC_ALWAYS_INLINE uint8_t sub8( uint8_t i, uint8_t j)
{
#if SUB8_C == 1
int16_t t = i - j;
return t;
#elif SUB8_AVRASM == 1
// Subtract j from i, period.
asm volatile( "sub %0, %1" : "+a" (i) : "a" (j));
return i;
#else
#error "No implementation for sub8 available."
#endif
}
/// Calculate an integer average of two unsigned
/// 8-bit integer values (uint8_t).
/// Fractional results are rounded down, e.g. avg8(20,41) = 30
LIB8STATIC_ALWAYS_INLINE uint8_t avg8( uint8_t i, uint8_t j)
{
#if AVG8_C == 1
return (i + j) >> 1;
#elif AVG8_AVRASM == 1
asm volatile(
/* First, add j to i, 9th bit overflows into C flag */
"add %0, %1 \n\t"
/* Divide by two, moving C flag into high 8th bit */
"ror %0 \n\t"
: "+a" (i)
: "a" (j) );
return i;
#else
#error "No implementation for avg8 available."
#endif
}
/// Calculate an integer average of two unsigned
/// 16-bit integer values (uint16_t).
/// Fractional results are rounded down, e.g. avg16(20,41) = 30
LIB8STATIC_ALWAYS_INLINE uint16_t avg16( uint16_t i, uint16_t j)
{
#if AVG16_C == 1
return (uint32_t)((uint32_t)(i) + (uint32_t)(j)) >> 1;
#elif AVG16_AVRASM == 1
asm volatile(
/* First, add jLo (heh) to iLo, 9th bit overflows into C flag */
"add %A[i], %A[j] \n\t"
/* Now, add C + jHi to iHi, 17th bit overflows into C flag */
"adc %B[i], %B[j] \n\t"
/* Divide iHi by two, moving C flag into high 16th bit, old 9th bit now in C */
"ror %B[i] \n\t"
/* Divide iLo by two, moving C flag into high 8th bit */
"ror %A[i] \n\t"
: [i] "+a" (i)
: [j] "a" (j) );
return i;
#else
#error "No implementation for avg16 available."
#endif
}
/// Calculate an integer average of two signed 7-bit
/// integers (int8_t)
/// If the first argument is even, result is rounded down.
/// If the first argument is odd, result is result up.
LIB8STATIC_ALWAYS_INLINE int8_t avg7( int8_t i, int8_t j)
{
#if AVG7_C == 1
return ((i + j) >> 1) + (i & 0x1);
#elif AVG7_AVRASM == 1
asm volatile(
"asr %1 \n\t"
"asr %0 \n\t"
"adc %0, %1 \n\t"
: "+a" (i)
: "a" (j) );
return i;
#else
#error "No implementation for avg7 available."
#endif
}
/// Calculate an integer average of two signed 15-bit
/// integers (int16_t)
/// If the first argument is even, result is rounded down.
/// If the first argument is odd, result is result up.
LIB8STATIC_ALWAYS_INLINE int16_t avg15( int16_t i, int16_t j)
{
#if AVG15_C == 1
return ((int32_t)((int32_t)(i) + (int32_t)(j)) >> 1) + (i & 0x1);
#elif AVG15_AVRASM == 1
asm volatile(
/* first divide j by 2, throwing away lowest bit */
"asr %B[j] \n\t"
"ror %A[j] \n\t"
/* now divide i by 2, with lowest bit going into C */
"asr %B[i] \n\t"
"ror %A[i] \n\t"
/* add j + C to i */
"adc %A[i], %A[j] \n\t"
"adc %B[i], %B[j] \n\t"
: [i] "+a" (i)
: [j] "a" (j) );
return i;
#else
#error "No implementation for avg15 available."
#endif
}
/// Calculate the remainder of one unsigned 8-bit
/// value divided by anoter, aka A % M.
/// Implemented by repeated subtraction, which is
/// very compact, and very fast if A is 'probably'
/// less than M. If A is a large multiple of M,
/// the loop has to execute multiple times. However,
/// even in that case, the loop is only two
/// instructions long on AVR, i.e., quick.
LIB8STATIC_ALWAYS_INLINE uint8_t mod8( uint8_t a, uint8_t m)
{
#if defined(__AVR__)
asm volatile (
"L_%=: sub %[a],%[m] \n\t"
" brcc L_%= \n\t"
" add %[a],%[m] \n\t"
: [a] "+r" (a)
: [m] "r" (m)
);
#else
while( a >= m) a -= m;
#endif
return a;
}
/// Add two numbers, and calculate the modulo
/// of the sum and a third number, M.
/// In other words, it returns (A+B) % M.
/// It is designed as a compact mechanism for
/// incrementing a 'mode' switch and wrapping
/// around back to 'mode 0' when the switch
/// goes past the end of the available range.
/// e.g. if you have seven modes, this switches
/// to the next one and wraps around if needed:
/// mode = addmod8( mode, 1, 7);
///LIB8STATIC_ALWAYS_INLINESee 'mod8' for notes on performance.
LIB8STATIC uint8_t addmod8( uint8_t a, uint8_t b, uint8_t m)
{
#if defined(__AVR__)
asm volatile (
" add %[a],%[b] \n\t"
"L_%=: sub %[a],%[m] \n\t"
" brcc L_%= \n\t"
" add %[a],%[m] \n\t"
: [a] "+r" (a)
: [b] "r" (b), [m] "r" (m)
);
#else
a += b;
while( a >= m) a -= m;
#endif
return a;
}
/// Subtract two numbers, and calculate the modulo
/// of the difference and a third number, M.
/// In other words, it returns (A-B) % M.
/// It is designed as a compact mechanism for
/// incrementing a 'mode' switch and wrapping
/// around back to 'mode 0' when the switch
/// goes past the end of the available range.
/// e.g. if you have seven modes, this switches
/// to the next one and wraps around if needed:
/// mode = addmod8( mode, 1, 7);
///LIB8STATIC_ALWAYS_INLINESee 'mod8' for notes on performance.
LIB8STATIC uint8_t submod8( uint8_t a, uint8_t b, uint8_t m)
{
#if defined(__AVR__)
asm volatile (
" sub %[a],%[b] \n\t"
"L_%=: sub %[a],%[m] \n\t"
" brcc L_%= \n\t"
" add %[a],%[m] \n\t"
: [a] "+r" (a)
: [b] "r" (b), [m] "r" (m)
);
#else
a -= b;
while( a >= m) a -= m;
#endif
return a;
}
/// 8x8 bit multiplication, with 8 bit result
LIB8STATIC_ALWAYS_INLINE uint8_t mul8( uint8_t i, uint8_t j)
{
#if MUL8_C == 1
return ((uint16_t)i * (uint16_t)(j) ) & 0xFF;
#elif MUL8_AVRASM == 1
asm volatile(
/* Multiply 8-bit i * 8-bit j, giving 16-bit r1,r0 */
"mul %0, %1 \n\t"
/* Extract the LOW 8-bits (r0) */
"mov %0, r0 \n\t"
/* Restore r1 to "0"; it's expected to always be that */
"clr __zero_reg__ \n\t"
: "+a" (i)
: "a" (j)
: "r0", "r1");
return i;
#else
#error "No implementation for mul8 available."
#endif
}
/// saturating 8x8 bit multiplication, with 8 bit result
/// @returns the product of i * j, capping at 0xFF
LIB8STATIC_ALWAYS_INLINE uint8_t qmul8( uint8_t i, uint8_t j)
{
#if QMUL8_C == 1
int p = ((uint16_t)i * (uint16_t)(j) );
if( p > 255) p = 255;
return p;
#elif QMUL8_AVRASM == 1
asm volatile(
/* Multiply 8-bit i * 8-bit j, giving 16-bit r1,r0 */
" mul %0, %1 \n\t"
/* If high byte of result is zero, all is well. */
" tst r1 \n\t"
" breq Lnospill_%= \n\t"
/* If high byte of result > 0, saturate low byte to 0xFF */
" ldi %0,0xFF \n\t"
" rjmp Ldone_%= \n\t"
"Lnospill_%=: \n\t"
/* Extract the LOW 8-bits (r0) */
" mov %0, r0 \n\t"
"Ldone_%=: \n\t"
/* Restore r1 to "0"; it's expected to always be that */
" clr __zero_reg__ \n\t"
: "+a" (i)
: "a" (j)
: "r0", "r1");
return i;
#else
#error "No implementation for qmul8 available."
#endif
}
/// take abs() of a signed 8-bit uint8_t
LIB8STATIC_ALWAYS_INLINE int8_t abs8( int8_t i)
{
#if ABS8_C == 1
if( i < 0) i = -i;
return i;
#elif ABS8_AVRASM == 1
asm volatile(
/* First, check the high bit, and prepare to skip if it's clear */
"sbrc %0, 7 \n"
/* Negate the value */
"neg %0 \n"
: "+r" (i) : "r" (i) );
return i;
#else
#error "No implementation for abs8 available."
#endif
}
/// square root for 16-bit integers
/// About three times faster and five times smaller
/// than Arduino's general sqrt on AVR.
LIB8STATIC uint8_t sqrt16(uint16_t x)
{
if( x <= 1) {
return x;
}
uint8_t low = 1; // lower bound
uint8_t hi, mid;
if( x > 7904) {
hi = 255;
} else {
hi = (x >> 5) + 8; // initial estimate for upper bound
}
do {
mid = (low + hi) >> 1;
if ((uint16_t)(mid * mid) > x) {
hi = mid - 1;
} else {
if( mid == 255) {
return 255;
}
low = mid + 1;
}
} while (hi >= low);
return low - 1;
}
/// blend a variable proproportion(0-255) of one byte to another
/// @param a - the starting byte value
/// @param b - the byte value to blend toward
/// @param amountOfB - the proportion (0-255) of b to blend
/// @returns a byte value between a and b, inclusive
#if (FASTLED_BLEND_FIXED == 1)
LIB8STATIC uint8_t blend8( uint8_t a, uint8_t b, uint8_t amountOfB)
{
#if BLEND8_C == 1
uint16_t partial;
uint8_t result;
uint8_t amountOfA = 255 - amountOfB;
partial = (a * amountOfA);
#if (FASTLED_SCALE8_FIXED == 1)
partial += a;
//partial = add8to16( a, partial);
#endif
partial += (b * amountOfB);
#if (FASTLED_SCALE8_FIXED == 1)
partial += b;
//partial = add8to16( b, partial);
#endif
result = partial >> 8;
return result;
#elif BLEND8_AVRASM == 1
uint16_t partial;
uint8_t result;
asm volatile (
/* partial = b * amountOfB */
" mul %[b], %[amountOfB] \n\t"
" movw %A[partial], r0 \n\t"
/* amountOfB (aka amountOfA) = 255 - amountOfB */
" com %[amountOfB] \n\t"
/* partial += a * amountOfB (aka amountOfA) */
" mul %[a], %[amountOfB] \n\t"
" add %A[partial], r0 \n\t"
" adc %B[partial], r1 \n\t"
" clr __zero_reg__ \n\t"
#if (FASTLED_SCALE8_FIXED == 1)
/* partial += a */
" add %A[partial], %[a] \n\t"
" adc %B[partial], __zero_reg__ \n\t"
// partial += b
" add %A[partial], %[b] \n\t"
" adc %B[partial], __zero_reg__ \n\t"
#endif
: [partial] "=r" (partial),
[amountOfB] "+a" (amountOfB)
: [a] "a" (a),
[b] "a" (b)
: "r0", "r1"
);
result = partial >> 8;
return result;
#else
#error "No implementation for blend8 available."
#endif
}
#else
LIB8STATIC uint8_t blend8( uint8_t a, uint8_t b, uint8_t amountOfB)
{
// This version loses precision in the integer math
// and can actually return results outside of the range
// from a to b. Its use is not recommended.
uint8_t result;
uint8_t amountOfA = 255 - amountOfB;
result = scale8_LEAVING_R1_DIRTY( a, amountOfA)
+ scale8_LEAVING_R1_DIRTY( b, amountOfB);
cleanup_R1();
return result;
}
#endif
///@}
#endif

94
lib/lib8tion/random8.h Normal file
View File

@@ -0,0 +1,94 @@
#ifndef __INC_LIB8TION_RANDOM_H
#define __INC_LIB8TION_RANDOM_H
///@ingroup lib8tion
///@defgroup Random Fast random number generators
/// Fast 8- and 16- bit unsigned random numbers.
/// Significantly faster than Arduino random(), but
/// also somewhat less random. You can add entropy.
///@{
// X(n+1) = (2053 * X(n)) + 13849)
#define FASTLED_RAND16_2053 ((uint16_t)(2053))
#define FASTLED_RAND16_13849 ((uint16_t)(13849))
/// random number seed
extern uint16_t rand16seed;// = RAND16_SEED;
/// Generate an 8-bit random number
LIB8STATIC uint8_t random8(void)
{
rand16seed = (rand16seed * FASTLED_RAND16_2053) + FASTLED_RAND16_13849;
// return the sum of the high and low bytes, for better
// mixing and non-sequential correlation
return (uint8_t)(((uint8_t)(rand16seed & 0xFF)) +
((uint8_t)(rand16seed >> 8)));
}
/// Generate a 16 bit random number
LIB8STATIC uint16_t random16(void)
{
rand16seed = (rand16seed * FASTLED_RAND16_2053) + FASTLED_RAND16_13849;
return rand16seed;
}
/// Generate an 8-bit random number between 0 and lim
/// @param lim the upper bound for the result
LIB8STATIC uint8_t random8_max(uint8_t lim)
{
uint8_t r = random8();
r = (r*lim) >> 8;
return r;
}
/// Generate an 8-bit random number in the given range
/// @param min the lower bound for the random number
/// @param lim the upper bound for the random number
LIB8STATIC uint8_t random8_min_max(uint8_t min, uint8_t lim)
{
uint8_t delta = lim - min;
uint8_t r = random8_max(delta) + min;
return r;
}
/// Generate an 16-bit random number between 0 and lim
/// @param lim the upper bound for the result
LIB8STATIC uint16_t random16_max(uint16_t lim)
{
uint16_t r = random16();
uint32_t p = (uint32_t)lim * (uint32_t)r;
r = p >> 16;
return r;
}
/// Generate an 16-bit random number in the given range
/// @param min the lower bound for the random number
/// @param lim the upper bound for the random number
LIB8STATIC uint16_t random16_min_max( uint16_t min, uint16_t lim)
{
uint16_t delta = lim - min;
uint16_t r = random16_max(delta) + min;
return r;
}
/// Set the 16-bit seed used for the random number generator
LIB8STATIC void random16_set_seed(uint16_t seed)
{
rand16seed = seed;
}
/// Get the current seed value for the random number generator
LIB8STATIC uint16_t random16_get_seed(void)
{
return rand16seed;
}
/// Add entropy into the random number generator
LIB8STATIC void random16_add_entropy(uint16_t entropy)
{
rand16seed += entropy;
}
///@}
#endif

542
lib/lib8tion/scale8.h Normal file
View File

@@ -0,0 +1,542 @@
#ifndef __INC_LIB8TION_SCALE_H
#define __INC_LIB8TION_SCALE_H
///@ingroup lib8tion
///@defgroup Scaling Scaling functions
/// Fast, efficient 8-bit scaling functions specifically
/// designed for high-performance LED programming.
///
/// Because of the AVR(Arduino) and ARM assembly language
/// implementations provided, using these functions often
/// results in smaller and faster code than the equivalent
/// program using plain "C" arithmetic and logic.
///@{
/// scale one byte by a second one, which is treated as
/// the numerator of a fraction whose denominator is 256
/// In other words, it computes i * (scale / 256)
/// 4 clocks AVR with MUL, 2 clocks ARM
LIB8STATIC_ALWAYS_INLINE uint8_t scale8( uint8_t i, fract8 scale)
{
#if SCALE8_C == 1
#if (FASTLED_SCALE8_FIXED == 1)
return (((uint16_t)i) * (1+(uint16_t)(scale))) >> 8;
#else
return ((uint16_t)i * (uint16_t)(scale) ) >> 8;
#endif
#elif SCALE8_AVRASM == 1
#if defined(LIB8_ATTINY)
#if (FASTLED_SCALE8_FIXED == 1)
uint8_t work=i;
#else
uint8_t work=0;
#endif
uint8_t cnt=0x80;
asm volatile(
#if (FASTLED_SCALE8_FIXED == 1)
" inc %[scale] \n\t"
" breq DONE_%= \n\t"
" clr %[work] \n\t"
#endif
"LOOP_%=: \n\t"
/*" sbrc %[scale], 0 \n\t"
" add %[work], %[i] \n\t"
" ror %[work] \n\t"
" lsr %[scale] \n\t"
" clc \n\t"*/
" sbrc %[scale], 0 \n\t"
" add %[work], %[i] \n\t"
" ror %[work] \n\t"
" lsr %[scale] \n\t"
" lsr %[cnt] \n\t"
"brcc LOOP_%= \n\t"
"DONE_%=: \n\t"
: [work] "+r" (work), [cnt] "+r" (cnt)
: [scale] "r" (scale), [i] "r" (i)
:
);
return work;
#else
asm volatile(
#if (FASTLED_SCALE8_FIXED==1)
// Multiply 8-bit i * 8-bit scale, giving 16-bit r1,r0
"mul %0, %1 \n\t"
// Add i to r0, possibly setting the carry flag
"add r0, %0 \n\t"
// load the immediate 0 into i (note, this does _not_ touch any flags)
"ldi %0, 0x00 \n\t"
// walk and chew gum at the same time
"adc %0, r1 \n\t"
#else
/* Multiply 8-bit i * 8-bit scale, giving 16-bit r1,r0 */
"mul %0, %1 \n\t"
/* Move the high 8-bits of the product (r1) back to i */
"mov %0, r1 \n\t"
/* Restore r1 to "0"; it's expected to always be that */
#endif
"clr __zero_reg__ \n\t"
: "+a" (i) /* writes to i */
: "a" (scale) /* uses scale */
: "r0", "r1" /* clobbers r0, r1 */ );
/* Return the result */
return i;
#endif
#else
#error "No implementation for scale8 available."
#endif
}
/// The "video" version of scale8 guarantees that the output will
/// be only be zero if one or both of the inputs are zero. If both
/// inputs are non-zero, the output is guaranteed to be non-zero.
/// This makes for better 'video'/LED dimming, at the cost of
/// several additional cycles.
LIB8STATIC_ALWAYS_INLINE uint8_t scale8_video( uint8_t i, fract8 scale)
{
#if SCALE8_C == 1 || defined(LIB8_ATTINY)
uint8_t j = (((int)i * (int)scale) >> 8) + ((i&&scale)?1:0);
// uint8_t nonzeroscale = (scale != 0) ? 1 : 0;
// uint8_t j = (i == 0) ? 0 : (((int)i * (int)(scale) ) >> 8) + nonzeroscale;
return j;
#elif SCALE8_AVRASM == 1
uint8_t j=0;
asm volatile(
" tst %[i]\n\t"
" breq L_%=\n\t"
" mul %[i], %[scale]\n\t"
" mov %[j], r1\n\t"
" clr __zero_reg__\n\t"
" cpse %[scale], r1\n\t"
" subi %[j], 0xFF\n\t"
"L_%=: \n\t"
: [j] "+a" (j)
: [i] "a" (i), [scale] "a" (scale)
: "r0", "r1");
return j;
// uint8_t nonzeroscale = (scale != 0) ? 1 : 0;
// asm volatile(
// " tst %0 \n"
// " breq L_%= \n"
// " mul %0, %1 \n"
// " mov %0, r1 \n"
// " add %0, %2 \n"
// " clr __zero_reg__ \n"
// "L_%=: \n"
// : "+a" (i)
// : "a" (scale), "a" (nonzeroscale)
// : "r0", "r1");
// // Return the result
// return i;
#else
#error "No implementation for scale8_video available."
#endif
}
/// This version of scale8 does not clean up the R1 register on AVR
/// If you are doing several 'scale8's in a row, use this, and
/// then explicitly call cleanup_R1.
LIB8STATIC_ALWAYS_INLINE uint8_t scale8_LEAVING_R1_DIRTY( uint8_t i, fract8 scale)
{
#if SCALE8_C == 1
#if (FASTLED_SCALE8_FIXED == 1)
return (((uint16_t)i) * ((uint16_t)(scale)+1)) >> 8;
#else
return ((int)i * (int)(scale) ) >> 8;
#endif
#elif SCALE8_AVRASM == 1
asm volatile(
#if (FASTLED_SCALE8_FIXED==1)
// Multiply 8-bit i * 8-bit scale, giving 16-bit r1,r0
"mul %0, %1 \n\t"
// Add i to r0, possibly setting the carry flag
"add r0, %0 \n\t"
// load the immediate 0 into i (note, this does _not_ touch any flags)
"ldi %0, 0x00 \n\t"
// walk and chew gum at the same time
"adc %0, r1 \n\t"
#else
/* Multiply 8-bit i * 8-bit scale, giving 16-bit r1,r0 */
"mul %0, %1 \n\t"
/* Move the high 8-bits of the product (r1) back to i */
"mov %0, r1 \n\t"
#endif
/* R1 IS LEFT DIRTY HERE; YOU MUST ZERO IT OUT YOURSELF */
/* "clr __zero_reg__ \n\t" */
: "+a" (i) /* writes to i */
: "a" (scale) /* uses scale */
: "r0", "r1" /* clobbers r0, r1 */ );
// Return the result
return i;
#else
#error "No implementation for scale8_LEAVING_R1_DIRTY available."
#endif
}
/// This version of scale8_video does not clean up the R1 register on AVR
/// If you are doing several 'scale8_video's in a row, use this, and
/// then explicitly call cleanup_R1.
LIB8STATIC_ALWAYS_INLINE uint8_t scale8_video_LEAVING_R1_DIRTY( uint8_t i, fract8 scale)
{
#if SCALE8_C == 1 || defined(LIB8_ATTINY)
uint8_t j = (((int)i * (int)scale) >> 8) + ((i&&scale)?1:0);
// uint8_t nonzeroscale = (scale != 0) ? 1 : 0;
// uint8_t j = (i == 0) ? 0 : (((int)i * (int)(scale) ) >> 8) + nonzeroscale;
return j;
#elif SCALE8_AVRASM == 1
uint8_t j=0;
asm volatile(
" tst %[i]\n\t"
" breq L_%=\n\t"
" mul %[i], %[scale]\n\t"
" mov %[j], r1\n\t"
" breq L_%=\n\t"
" subi %[j], 0xFF\n\t"
"L_%=: \n\t"
: [j] "+a" (j)
: [i] "a" (i), [scale] "a" (scale)
: "r0", "r1");
return j;
// uint8_t nonzeroscale = (scale != 0) ? 1 : 0;
// asm volatile(
// " tst %0 \n"
// " breq L_%= \n"
// " mul %0, %1 \n"
// " mov %0, r1 \n"
// " add %0, %2 \n"
// " clr __zero_reg__ \n"
// "L_%=: \n"
// : "+a" (i)
// : "a" (scale), "a" (nonzeroscale)
// : "r0", "r1");
// // Return the result
// return i;
#else
#error "No implementation for scale8_video_LEAVING_R1_DIRTY available."
#endif
}
/// Clean up the r1 register after a series of *LEAVING_R1_DIRTY calls
LIB8STATIC_ALWAYS_INLINE void cleanup_R1(void)
{
#if CLEANUP_R1_AVRASM == 1
// Restore r1 to "0"; it's expected to always be that
asm volatile( "clr __zero_reg__ \n\t" : : : "r1" );
#endif
}
/// scale a 16-bit unsigned value by an 8-bit value,
/// considered as numerator of a fraction whose denominator
/// is 256. In other words, it computes i * (scale / 256)
LIB8STATIC_ALWAYS_INLINE uint16_t scale16by8( uint16_t i, fract8 scale )
{
#if SCALE16BY8_C == 1
uint16_t result;
#if FASTLED_SCALE8_FIXED == 1
result = (i * (1+((uint16_t)scale))) >> 8;
#else
result = (i * scale) / 256;
#endif
return result;
#elif SCALE16BY8_AVRASM == 1
#if FASTLED_SCALE8_FIXED == 1
uint16_t result = 0;
asm volatile(
// result.A = HighByte( (i.A x scale) + i.A )
" mul %A[i], %[scale] \n\t"
" add r0, %A[i] \n\t"
// " adc r1, [zero] \n\t"
// " mov %A[result], r1 \n\t"
" adc %A[result], r1 \n\t"
// result.A-B += i.B x scale
" mul %B[i], %[scale] \n\t"
" add %A[result], r0 \n\t"
" adc %B[result], r1 \n\t"
// cleanup r1
" clr __zero_reg__ \n\t"
// result.A-B += i.B
" add %A[result], %B[i] \n\t"
" adc %B[result], __zero_reg__ \n\t"
: [result] "+r" (result)
: [i] "r" (i), [scale] "r" (scale)
: "r0", "r1"
);
return result;
#else
uint16_t result = 0;
asm volatile(
// result.A = HighByte(i.A x j )
" mul %A[i], %[scale] \n\t"
" mov %A[result], r1 \n\t"
//" clr %B[result] \n\t"
// result.A-B += i.B x j
" mul %B[i], %[scale] \n\t"
" add %A[result], r0 \n\t"
" adc %B[result], r1 \n\t"
// cleanup r1
" clr __zero_reg__ \n\t"
: [result] "+r" (result)
: [i] "r" (i), [scale] "r" (scale)
: "r0", "r1"
);
return result;
#endif
#else
#error "No implementation for scale16by8 available."
#endif
}
/// scale a 16-bit unsigned value by a 16-bit value,
/// considered as numerator of a fraction whose denominator
/// is 65536. In other words, it computes i * (scale / 65536)
LIB8STATIC uint16_t scale16( uint16_t i, fract16 scale )
{
#if SCALE16_C == 1
uint16_t result;
#if FASTLED_SCALE8_FIXED == 1
result = ((uint32_t)(i) * (1+(uint32_t)(scale))) / 65536;
#else
result = ((uint32_t)(i) * (uint32_t)(scale)) / 65536;
#endif
return result;
#elif SCALE16_AVRASM == 1
#if FASTLED_SCALE8_FIXED == 1
// implemented sort of like
// result = ((i * scale) + i ) / 65536
//
// why not like this, you may ask?
// result = (i * (scale+1)) / 65536
// the answer is that if scale is 65535, then scale+1
// will be zero, which is not what we want.
uint32_t result;
asm volatile(
// result.A-B = i.A x scale.A
" mul %A[i], %A[scale] \n\t"
// save results...
// basic idea:
//" mov %A[result], r0 \n\t"
//" mov %B[result], r1 \n\t"
// which can be written as...
" movw %A[result], r0 \n\t"
// Because we're going to add i.A-B to
// result.A-D, we DO need to keep both
// the r0 and r1 portions of the product
// UNlike in the 'unfixed scale8' version.
// So the movw here is needed.
: [result] "=r" (result)
: [i] "r" (i),
[scale] "r" (scale)
: "r0", "r1"
);
asm volatile(
// result.C-D = i.B x scale.B
" mul %B[i], %B[scale] \n\t"
//" mov %C[result], r0 \n\t"
//" mov %D[result], r1 \n\t"
" movw %C[result], r0 \n\t"
: [result] "+r" (result)
: [i] "r" (i),
[scale] "r" (scale)
: "r0", "r1"
);
const uint8_t zero = 0;
asm volatile(
// result.B-D += i.B x scale.A
" mul %B[i], %A[scale] \n\t"
" add %B[result], r0 \n\t"
" adc %C[result], r1 \n\t"
" adc %D[result], %[zero] \n\t"
// result.B-D += i.A x scale.B
" mul %A[i], %B[scale] \n\t"
" add %B[result], r0 \n\t"
" adc %C[result], r1 \n\t"
" adc %D[result], %[zero] \n\t"
// cleanup r1
" clr r1 \n\t"
: [result] "+r" (result)
: [i] "r" (i),
[scale] "r" (scale),
[zero] "r" (zero)
: "r0", "r1"
);
asm volatile(
// result.A-D += i.A-B
" add %A[result], %A[i] \n\t"
" adc %B[result], %B[i] \n\t"
" adc %C[result], %[zero] \n\t"
" adc %D[result], %[zero] \n\t"
: [result] "+r" (result)
: [i] "r" (i),
[zero] "r" (zero)
);
result = result >> 16;
return result;
#else
uint32_t result;
asm volatile(
// result.A-B = i.A x scale.A
" mul %A[i], %A[scale] \n\t"
// save results...
// basic idea:
//" mov %A[result], r0 \n\t"
//" mov %B[result], r1 \n\t"
// which can be written as...
" movw %A[result], r0 \n\t"
// We actually don't need to do anything with r0,
// as result.A is never used again here, so we
// could just move the high byte, but movw is
// one clock cycle, just like mov, so might as
// well, in case we want to use this code for
// a generic 16x16 multiply somewhere.
: [result] "=r" (result)
: [i] "r" (i),
[scale] "r" (scale)
: "r0", "r1"
);
asm volatile(
// result.C-D = i.B x scale.B
" mul %B[i], %B[scale] \n\t"
//" mov %C[result], r0 \n\t"
//" mov %D[result], r1 \n\t"
" movw %C[result], r0 \n\t"
: [result] "+r" (result)
: [i] "r" (i),
[scale] "r" (scale)
: "r0", "r1"
);
const uint8_t zero = 0;
asm volatile(
// result.B-D += i.B x scale.A
" mul %B[i], %A[scale] \n\t"
" add %B[result], r0 \n\t"
" adc %C[result], r1 \n\t"
" adc %D[result], %[zero] \n\t"
// result.B-D += i.A x scale.B
" mul %A[i], %B[scale] \n\t"
" add %B[result], r0 \n\t"
" adc %C[result], r1 \n\t"
" adc %D[result], %[zero] \n\t"
// cleanup r1
" clr r1 \n\t"
: [result] "+r" (result)
: [i] "r" (i),
[scale] "r" (scale),
[zero] "r" (zero)
: "r0", "r1"
);
result = result >> 16;
return result;
#endif
#else
#error "No implementation for scale16 available."
#endif
}
///@}
///@defgroup Dimming Dimming and brightening functions
///
/// Dimming and brightening functions
///
/// The eye does not respond in a linear way to light.
/// High speed PWM'd LEDs at 50% duty cycle appear far
/// brighter then the 'half as bright' you might expect.
///
/// If you want your midpoint brightness leve (128) to
/// appear half as bright as 'full' brightness (255), you
/// have to apply a 'dimming function'.
///@{
/// Adjust a scaling value for dimming
LIB8STATIC uint8_t dim8_raw( uint8_t x)
{
return scale8( x, x);
}
/// Adjust a scaling value for dimming for video (value will never go below 1)
LIB8STATIC uint8_t dim8_video( uint8_t x)
{
return scale8_video( x, x);
}
/// Linear version of the dimming function that halves for values < 128
LIB8STATIC uint8_t dim8_lin( uint8_t x )
{
if( x & 0x80 ) {
x = scale8( x, x);
} else {
x += 1;
x /= 2;
}
return x;
}
/// inverse of the dimming function, brighten a value
LIB8STATIC uint8_t brighten8_raw( uint8_t x)
{
uint8_t ix = 255 - x;
return 255 - scale8( ix, ix);
}
/// inverse of the dimming function, brighten a value
LIB8STATIC uint8_t brighten8_video( uint8_t x)
{
uint8_t ix = 255 - x;
return 255 - scale8_video( ix, ix);
}
/// inverse of the dimming function, brighten a value
LIB8STATIC uint8_t brighten8_lin( uint8_t x )
{
uint8_t ix = 255 - x;
if( ix & 0x80 ) {
ix = scale8( ix, ix);
} else {
ix += 1;
ix /= 2;
}
return 255 - ix;
}
///@}
#endif

259
lib/lib8tion/trig8.h Normal file
View File

@@ -0,0 +1,259 @@
#ifndef __INC_LIB8TION_TRIG_H
#define __INC_LIB8TION_TRIG_H
///@ingroup lib8tion
///@defgroup Trig Fast trig functions
/// Fast 8 and 16-bit approximations of sin(x) and cos(x).
/// Don't use these approximations for calculating the
/// trajectory of a rocket to Mars, but they're great
/// for art projects and LED displays.
///
/// On Arduino/AVR, the 16-bit approximation is more than
/// 10X faster than floating point sin(x) and cos(x), while
/// the 8-bit approximation is more than 20X faster.
///@{
#if defined(__AVR__)
#define sin16 sin16_avr
#else
#define sin16 sin16_C
#endif
/// Fast 16-bit approximation of sin(x). This approximation never varies more than
/// 0.69% from the floating point value you'd get by doing
///
/// float s = sin(x) * 32767.0;
///
/// @param theta input angle from 0-65535
/// @returns sin of theta, value between -32767 to 32767.
LIB8STATIC int16_t sin16_avr( uint16_t theta )
{
static const uint8_t data[] =
{ 0, 0, 49, 0, 6393%256, 6393/256, 48, 0,
12539%256, 12539/256, 44, 0, 18204%256, 18204/256, 38, 0,
23170%256, 23170/256, 31, 0, 27245%256, 27245/256, 23, 0,
30273%256, 30273/256, 14, 0, 32137%256, 32137/256, 4 /*,0*/ };
uint16_t offset = (theta & 0x3FFF);
// AVR doesn't have a multi-bit shift instruction,
// so if we say "offset >>= 3", gcc makes a tiny loop.
// Inserting empty volatile statements between each
// bit shift forces gcc to unroll the loop.
offset >>= 1; // 0..8191
asm volatile("");
offset >>= 1; // 0..4095
asm volatile("");
offset >>= 1; // 0..2047
if( theta & 0x4000 ) offset = 2047 - offset;
uint8_t sectionX4;
sectionX4 = offset / 256;
sectionX4 *= 4;
uint8_t m;
union {
uint16_t b;
struct {
uint8_t blo;
uint8_t bhi;
};
} u;
//in effect u.b = blo + (256 * bhi);
u.blo = data[ sectionX4 ];
u.bhi = data[ sectionX4 + 1];
m = data[ sectionX4 + 2];
uint8_t secoffset8 = (uint8_t)(offset) / 2;
uint16_t mx = m * secoffset8;
int16_t y = mx + u.b;
if( theta & 0x8000 ) y = -y;
return y;
}
/// Fast 16-bit approximation of sin(x). This approximation never varies more than
/// 0.69% from the floating point value you'd get by doing
///
/// float s = sin(x) * 32767.0;
///
/// @param theta input angle from 0-65535
/// @returns sin of theta, value between -32767 to 32767.
LIB8STATIC int16_t sin16_C( uint16_t theta )
{
static const uint16_t base[] =
{ 0, 6393, 12539, 18204, 23170, 27245, 30273, 32137 };
static const uint8_t slope[] =
{ 49, 48, 44, 38, 31, 23, 14, 4 };
uint16_t offset = (theta & 0x3FFF) >> 3; // 0..2047
if( theta & 0x4000 ) offset = 2047 - offset;
uint8_t section = offset / 256; // 0..7
uint16_t b = base[section];
uint8_t m = slope[section];
uint8_t secoffset8 = (uint8_t)(offset) / 2;
uint16_t mx = m * secoffset8;
int16_t y = mx + b;
if( theta & 0x8000 ) y = -y;
return y;
}
/// Fast 16-bit approximation of cos(x). This approximation never varies more than
/// 0.69% from the floating point value you'd get by doing
///
/// float s = cos(x) * 32767.0;
///
/// @param theta input angle from 0-65535
/// @returns sin of theta, value between -32767 to 32767.
LIB8STATIC int16_t cos16( uint16_t theta)
{
return sin16( theta + 16384);
}
///////////////////////////////////////////////////////////////////////
// sin8 & cos8
// Fast 8-bit approximations of sin(x) & cos(x).
// Input angle is an unsigned int from 0-255.
// Output is an unsigned int from 0 to 255.
//
// This approximation can vary to to 2%
// from the floating point value you'd get by doing
// float s = (sin( x ) * 128.0) + 128;
//
// Don't use this approximation for calculating the
// "real" trigonometric calculations, but it's great
// for art projects and LED displays.
//
// On Arduino/AVR, this approximation is more than
// 20X faster than floating point sin(x) and cos(x)
#if defined(__AVR__) && !defined(LIB8_ATTINY)
#define sin8 sin8_avr
#else
#define sin8 sin8_C
#endif
const uint8_t b_m16_interleave[] = { 0, 49, 49, 41, 90, 27, 117, 10 };
/// Fast 8-bit approximation of sin(x). This approximation never varies more than
/// 2% from the floating point value you'd get by doing
///
/// float s = (sin(x) * 128.0) + 128;
///
/// @param theta input angle from 0-255
/// @returns sin of theta, value between 0 and 255
LIB8STATIC uint8_t sin8_avr( uint8_t theta)
{
uint8_t offset = theta;
asm volatile(
"sbrc %[theta],6 \n\t"
"com %[offset] \n\t"
: [theta] "+r" (theta), [offset] "+r" (offset)
);
offset &= 0x3F; // 0..63
uint8_t secoffset = offset & 0x0F; // 0..15
if( theta & 0x40) secoffset++;
uint8_t m16; uint8_t b;
uint8_t section = offset >> 4; // 0..3
uint8_t s2 = section * 2;
const uint8_t* p = b_m16_interleave;
p += s2;
b = *p;
p++;
m16 = *p;
uint8_t mx;
uint8_t xr1;
asm volatile(
"mul %[m16],%[secoffset] \n\t"
"mov %[mx],r0 \n\t"
"mov %[xr1],r1 \n\t"
"eor r1, r1 \n\t"
"swap %[mx] \n\t"
"andi %[mx],0x0F \n\t"
"swap %[xr1] \n\t"
"andi %[xr1], 0xF0 \n\t"
"or %[mx], %[xr1] \n\t"
: [mx] "=d" (mx), [xr1] "=d" (xr1)
: [m16] "d" (m16), [secoffset] "d" (secoffset)
);
int8_t y = mx + b;
if( theta & 0x80 ) y = -y;
y += 128;
return y;
}
/// Fast 8-bit approximation of sin(x). This approximation never varies more than
/// 2% from the floating point value you'd get by doing
///
/// float s = (sin(x) * 128.0) + 128;
///
/// @param theta input angle from 0-255
/// @returns sin of theta, value between 0 and 255
LIB8STATIC uint8_t sin8_C( uint8_t theta)
{
uint8_t offset = theta;
if( theta & 0x40 ) {
offset = (uint8_t)255 - offset;
}
offset &= 0x3F; // 0..63
uint8_t secoffset = offset & 0x0F; // 0..15
if( theta & 0x40) secoffset++;
uint8_t section = offset >> 4; // 0..3
uint8_t s2 = section * 2;
const uint8_t* p = b_m16_interleave;
p += s2;
uint8_t b = *p;
p++;
uint8_t m16 = *p;
uint8_t mx = (m16 * secoffset) >> 4;
int8_t y = mx + b;
if( theta & 0x80 ) y = -y;
y += 128;
return y;
}
/// Fast 8-bit approximation of cos(x). This approximation never varies more than
/// 2% from the floating point value you'd get by doing
///
/// float s = (cos(x) * 128.0) + 128;
///
/// @param theta input angle from 0-255
/// @returns sin of theta, value between 0 and 255
LIB8STATIC uint8_t cos8( uint8_t theta)
{
return sin8( theta + 64);
}
///@}
#endif

View File

@@ -713,4 +713,83 @@
H__NOTE(_B5), H__NOTE(_C6), H__NOTE(_E6), H__NOTE(_G6), WD_NOTE(_G6), Q__NOTE(_C6), B__NOTE(_C6), H__NOTE(_B6), \
Q__NOTE(_C7), BD_NOTE(_C7),
#define ISABELLAS_LULLABY \
W__NOTE(_BF4), B__NOTE(_D5), W__NOTE(_EF5), B__NOTE(_F5), W__NOTE(_BF5), B__NOTE(_AF5), W__NOTE(_GF5), BD_NOTE(_F5), B__NOTE(_CS5), \
W__NOTE(_F5), B__NOTE(_C5), W__NOTE(_EF5), BD_NOTE(_BF4), W__NOTE(_AF4), W__NOTE(_BF4), W__NOTE(_F5), W__NOTE(_GF5), \
WD_NOTE(_AF5), H__NOTE(_FS5), W__NOTE(_F5), B__NOTE(_EF5), W__NOTE(_C6), B__NOTE(_AF5), W__NOTE(_F5), WD_NOTE(_AF5), \
H__NOTE(_BF5), W__NOTE(_F5), WD_NOTE(_AF5), H__NOTE(_BF5), W__NOTE(_F5), W__NOTE(_EF5), W__NOTE(_BF4), W__NOTE(_AF5), \
WD_NOTE(_F5), H__NOTE(_F5), H__NOTE(_BF5), H__NOTE(_C6), WD_NOTE(_CS6), H__NOTE(_C6), W__NOTE(_BF5), W__NOTE(_AF5), \
W__NOTE(_F5), W__NOTE(_EF5), WD_NOTE(_EF5), H__NOTE(_DF5), W__NOTE(_AF5), BD_NOTE(_F5), WD_NOTE(_BF4), H__NOTE(_C5), \
W__NOTE(_CS5), W__NOTE(_EF5), W__NOTE(_AF4), W__NOTE(_EF5), WD_NOTE(_GF5), H__NOTE(_F5), W__NOTE(_EF5), WD_NOTE(_F5), \
H__NOTE(_F5), H__NOTE(_BF5), H__NOTE(_C6), WD_NOTE(_CS6), H__NOTE(_C6), W__NOTE(_CS6), W__NOTE(_EF6), W__NOTE(_AF5), \
W__NOTE(_EF6), WD_NOTE(_GF6), H__NOTE(_F6), W__NOTE(_EF6), B__NOTE(_DF6), H__NOTE(_GF6), H__NOTE(_AF6), BD_NOTE(_DF6), \
B__NOTE(_BF5), W__NOTE(_F6), BD_NOTE(_C6), W__NOTE(_AF5), WD_NOTE(_EF6), H__NOTE(_DF6), W__NOTE(_C6), B__NOTE(_BF5),
#define FANTASIE_IMPROMPTU \
E__NOTE(_GS4), E__NOTE(_A4), E__NOTE(_GS4), E__NOTE(_REST), E__NOTE(_GS4), E__NOTE(_CS5), E__NOTE(_E5), E__NOTE(_DS5), E__NOTE(_CS5), \
E__NOTE(_DS5), E__NOTE(_CS5), E__NOTE(_C5), E__NOTE(_CS5), E__NOTE(_E5), E__NOTE(_GS5), E__NOTE(_GS4), E__NOTE(_A4), \
E__NOTE(_GS4), E__NOTE(_REST), E__NOTE(_GS4), E__NOTE(_CS5), E__NOTE(_E5), E__NOTE(_DS5), E__NOTE(_CS5), E__NOTE(_DS5), \
E__NOTE(_CS5), E__NOTE(_C5), E__NOTE(_CS5), E__NOTE(_E5), E__NOTE(_GS5), E__NOTE(_A4), E__NOTE(_CS5), E__NOTE(_DS5), \
E__NOTE(_FS5), E__NOTE(_A5), E__NOTE(_CS6), E__NOTE(_DS6), E__NOTE(_B6), E__NOTE(_A6), E__NOTE(_GS6), E__NOTE(_FS6), \
E__NOTE(_E6), E__NOTE(_DS6), E__NOTE(_FS6), E__NOTE(_CS6), E__NOTE(_C5), E__NOTE(_DS6), E__NOTE(_A5), E__NOTE(_GS5), \
E__NOTE(_FS5), E__NOTE(_A5), E__NOTE(_E5), E__NOTE(_DS5), E__NOTE(_FS5), E__NOTE(_CS5), E__NOTE(_C5), E__NOTE(_DS5), \
E__NOTE(_A4), E__NOTE(_GS4), E__NOTE(_B4), E__NOTE(_A4), E__NOTE(_A4), E__NOTE(_GS4), E__NOTE(_A4), E__NOTE(_GS4), \
E__NOTE(_REST), E__NOTE(_GS4), E__NOTE(_CS5), E__NOTE(_E5), E__NOTE(_DS5), E__NOTE(_CS5), E__NOTE(_DS5), E__NOTE(_CS5), \
E__NOTE(_C5), E__NOTE(_CS5), E__NOTE(_E5), E__NOTE(_GS5), E__NOTE(_GS4), E__NOTE(_AS4), E__NOTE(_GS4), E__NOTE(_REST), \
E__NOTE(_GS4), E__NOTE(_CS5), E__NOTE(_E5), E__NOTE(_DS5), E__NOTE(_CS5), E__NOTE(_DS5), E__NOTE(_CS5), E__NOTE(_C5), \
E__NOTE(_CS5), E__NOTE(_E5), E__NOTE(_GS5), E__NOTE(_DS5), E__NOTE(_E5), E__NOTE(_DS5), E__NOTE(_REST), E__NOTE(_DS5), \
E__NOTE(_B5), E__NOTE(_AS5), E__NOTE(_GS5), E__NOTE(_REST), E__NOTE(_E6), E__NOTE(_DS6), E__NOTE(_CS6), E__NOTE(_B5), \
E__NOTE(_AS5), E__NOTE(_GS5), E__NOTE(_REST), E__NOTE(_AS5), WD_NOTE(_GS5),
#define TERRAS_THEME \
Q__NOTE(_GS5), Q__NOTE(_AS5), Q__NOTE(_B5), Q__NOTE(_EF6), BD_NOTE(_B5), Q__NOTE(_AS5), Q__NOTE(_GS5), W__NOTE(_AS5), \
BD_NOTE(_DS5), Q__NOTE(_AF5), Q__NOTE(_BF5), Q__NOTE(_B5), Q__NOTE(_DS6), BD_NOTE(_B5), \
Q__NOTE(_BF5), Q__NOTE(_AF5), W__NOTE(_AS5), BD_NOTE(_DS6), Q__NOTE(_B5), Q__NOTE(_CS6), Q__NOTE(_DS6), \
Q__NOTE(_FS6), BD_NOTE(_DS6), Q__NOTE(_CS6), Q__NOTE(_B5), W__NOTE(_CS6), BD_NOTE(_FS5), \
Q__NOTE(_B5), Q__NOTE(_AS5), BD_NOTE(_GS5), Q__NOTE(_B5), Q__NOTE(_AS5), BD_NOTE(_GS5),
#define RENAI_CIRCULATION \
Q__NOTE(_E6), Q__NOTE(_B5), HD_NOTE(_CS6), HD_NOTE(_CS6), H__NOTE(_B5), HD_NOTE(_E6), HD_NOTE(_E6), Q__NOTE(_E6), Q__NOTE(_B5), \
HD_NOTE(_CS6), HD_NOTE(_CS6), H__NOTE(_B5), HD_NOTE(_E6), HD_NOTE(_GS6), Q__NOTE(_E6), Q__NOTE(_B5), HD_NOTE(_CS6), \
H__NOTE(_CS6), Q__NOTE(_CS6), H__NOTE(_B5), HD_NOTE(_E6), H__NOTE(_E6), Q__NOTE(_E6), H__NOTE(_FS6), HD_NOTE(_E6), \
H__NOTE(_E6), Q__NOTE(_E6), H__NOTE(_CS6), WD_NOTE(_GS6), HD_NOTE(_E6), H__NOTE(_E6), Q__NOTE(_FS6), H__NOTE(_G6), \
HD_NOTE(_GS6), HD_NOTE(_E6), Q__NOTE(_B5), Q__NOTE(_CS6), HD_NOTE(_E6), H__NOTE(_E6), Q__NOTE(_FS6), H__NOTE(_G6), \
HD_NOTE(_GS6), HD_NOTE(_E6), H__NOTE(_CS6), H__NOTE(_E6), Q__NOTE(_CS6), HD_NOTE(_E6), H__NOTE(_CS6), H__NOTE(_E6), \
Q__NOTE(_CS6), HD_NOTE(_E6), H__NOTE(_E6), Q__NOTE(_A6), H__NOTE(_GS6), HD_NOTE(_E6), H__NOTE(_FS6), WD_NOTE(_E6), \
H__NOTE(_GS6), H__NOTE(_A6), H__NOTE(_GS6), H__NOTE(_A6), W__NOTE(_B6), H__NOTE(_GS6), H__NOTE(_A6), H__NOTE(_GS6), \
H__NOTE(_A6), W__NOTE(_B6), H__NOTE(_B6), H__NOTE(_A6), H__NOTE(_GS6), H__NOTE(_A6), Q__NOTE(_GS6), H__NOTE(_E6), \
H__NOTE(_E6), Q__NOTE(_E6), H__NOTE(_CS6), Q__NOTE(_GS6), H__NOTE(_E6), H__NOTE(_E6), Q__NOTE(_E6), H__NOTE(_CS6), \
Q__NOTE(_E6), H__NOTE(_E6), H__NOTE(_E6), Q__NOTE(_E6), H__NOTE(_FS6), WD_NOTE(_E6), W__NOTE(_B6), W__NOTE(_GS6), \
W__NOTE(_FS6), H__NOTE(_GS6), H__NOTE(_GS6), H__NOTE(_FS6), H__NOTE(_E6), H__NOTE(_FS6), B__NOTE(_GS6), H__NOTE(_GS6), \
W__NOTE(_CS7), W__NOTE(_GS6), W__NOTE(_E6), H__NOTE(_GS6), H__NOTE(_GS6), HD_NOTE(_E6), H__NOTE(_E6), Q__NOTE(_E6), \
H__NOTE(_FS6), WD_NOTE(_E6),
#define PLATINUM_DISCO \
H__NOTE(_DS6), H__NOTE(_FS6), H__NOTE(_GS6), H__NOTE(_AS6), H__NOTE(_DS6), H__NOTE(_FS6), W__NOTE(_GS6), H__NOTE(_DS6), H__NOTE(_FS6), \
H__NOTE(_GS6), H__NOTE(_AS6), H__NOTE(_CS6), H__NOTE(_FS6), WD_NOTE(_FS6), H__NOTE(_CS6), W__NOTE(_DS6), H__NOTE(_FS6), \
H__NOTE(_AS6), W__NOTE(_GS6), H__NOTE(_FS6), H__NOTE(_GS6), Q__NOTE(_AS6), Q__NOTE(_CS7), Q__NOTE(_GS6), Q__NOTE(_AS6), \
Q__NOTE(_FS6), Q__NOTE(_GS6), Q__NOTE(_DS6), Q__NOTE(_FS6), Q__NOTE(_CS6), Q__NOTE(_DS6), Q__NOTE(_AS5), Q__NOTE(_CS6), \
H__NOTE(_DS6), H__NOTE(_FS6), H__NOTE(_GS6), H__NOTE(_AS6), H__NOTE(_DS6), H__NOTE(_FS6), W__NOTE(_GS6), H__NOTE(_DS6), \
H__NOTE(_FS6), H__NOTE(_GS6), H__NOTE(_AS6), H__NOTE(_CS7), H__NOTE(_GS6), WD_NOTE(_FS6), H__NOTE(_CS6), W__NOTE(_DS6), \
H__NOTE(_FS6), H__NOTE(_AS6), WD_NOTE(_GS6), H__NOTE(_FS6), Q__NOTE(_FS6), Q__NOTE(_GS5), Q__NOTE(_AS5), Q__NOTE(_CS6), \
Q__NOTE(_FS6), Q__NOTE(_GS6), Q__NOTE(_AS6), Q__NOTE(_CS7), WD_NOTE(_FS7), H__NOTE(_CS6), WD_NOTE(_DS6), H__NOTE(_CS6), \
WD_NOTE(_DS6), H__NOTE(_CS6), H__NOTE(_DS6), H__NOTE(_FS6), H__NOTE(_GS6), H__NOTE(_AS6), WD_NOTE(_GS6), H__NOTE(_FS6), \
WD_NOTE(_GS6), H__NOTE(_FS6), WD_NOTE(_GS6), H__NOTE(_FS6), H__NOTE(_GS6), H__NOTE(_AS6), H__NOTE(_DS6), H__NOTE(_FS6), \
WD_NOTE(_FS6), H__NOTE(_CS6), WD_NOTE(_DS6), H__NOTE(_CS6), WD_NOTE(_DS6), H__NOTE(_CS6), H__NOTE(_DS6), H__NOTE(_FS6), \
H__NOTE(_GS6), H__NOTE(_AS6), H__NOTE(_CS7), H__NOTE(_AS6), H__NOTE(_GS6), H__NOTE(_FS6), H__NOTE(_DS6), W__NOTE(_FS6), \
H__NOTE(_CS6), H__NOTE(_DS6), W__NOTE(_FS6), H__NOTE(_FS6), H__NOTE(_GS6), H__NOTE(_FS6), H__NOTE(_GS6), H__NOTE(_FS6), \
B__NOTE(_FS6),
#define NOCTURNE_OP_9_NO_1 \
H__NOTE(_BF5), H__NOTE(_C6), H__NOTE(_DF6), H__NOTE(_A5), H__NOTE(_BF5), H__NOTE(_GF5), W__NOTE(_F5), W__NOTE(_F5), W__NOTE(_F5), \
W__NOTE(_F5), H__NOTE(_GF5), H__NOTE(_F5), H__NOTE(_EF5), H__NOTE(_C5), B__NOTE(_DF5), W__NOTE(_BF4), Q__NOTE(_BF5), \
Q__NOTE(_C6), Q__NOTE(_DF6), Q__NOTE(_A5), Q__NOTE(_BF5), Q__NOTE(_A5), Q__NOTE(_GS5), Q__NOTE(_A5), Q__NOTE(_C6), \
Q__NOTE(_BF5), Q__NOTE(_GF5), Q__NOTE(_F5), Q__NOTE(_GF5), Q__NOTE(_E5), Q__NOTE(_F5), Q__NOTE(_BF5), Q__NOTE(_A5), \
Q__NOTE(_AF5), Q__NOTE(_G5), Q__NOTE(_GF5), Q__NOTE(_F5), Q__NOTE(_E5), Q__NOTE(_EF5), Q__NOTE(_D5), Q__NOTE(_DF5), \
Q__NOTE(_C5), Q__NOTE(_DF5), Q__NOTE(_C5), Q__NOTE(_B4), Q__NOTE(_C5), Q__NOTE(_F5), Q__NOTE(_E5), Q__NOTE(_EF5), \
B__NOTE(_DF5), W__NOTE(_BF4), W__NOTE(_BF5), W__NOTE(_BF5), W__NOTE(_BF5), BD_NOTE(_AF5), W__NOTE(_DF5), H__NOTE(_BF4), \
H__NOTE(_C5), H__NOTE(_DF5), H__NOTE(_GF5), H__NOTE(_GF5), BD_NOTE(_F5), W__NOTE(_EF5), H__NOTE(_F5), H__NOTE(_EF5), \
H__NOTE(_DF5), H__NOTE(_A4), B__NOTE(_AF4), W__NOTE(_DF5), W__NOTE(_EF5), H__NOTE(_F5), H__NOTE(_EF5), H__NOTE(_DF5), \
H__NOTE(_EF5), BD_NOTE(_F5),
#endif

Some files were not shown because too many files have changed in this diff Show More