Files
zsa_qmk_firmware/drivers/sensors/navigator_trackpad.c
2025-08-26 10:15:16 +07:00

484 lines
15 KiB
C

// Copyright 2025 ZSA Technology Labs, Inc <contact@zsa.io>
// SPDX-License-Identifier: GPL-2.0-or-later
// THIS IS A WORK IN PROGRESS, AS THE TRACKPAD IC's FIRMWARE IS STILL IN DEVELOPMENT
// DO NOT USE THIS CODE IN PRODUCTION
#include <stdint.h>
#include <sys/types.h>
#include <math.h>
#include "navigator_trackpad.h"
#include "i2c_master.h"
#include "quantum.h"
#include "timer.h"
#ifdef PROTOCOL_LUFA
# error "LUFA is not supported yet"
#endif
const pointing_device_driver_t navigator_trackpad_pointing_device_driver = {.init = navigator_trackpad_device_init, .get_report = navigator_trackpad_get_report, .get_cpi = navigator_trackpad_get_cpi, .set_cpi = navigator_trackpad_set_cpi};
uint16_t current_cpi = DEFAULT_CPI_TICK;
uint32_t gpio_offset_addr;
uint8_t has_motion = 0;
extern bool set_scrolling;
bool in_motion;
bool touchpad_init;
#if defined(NAVIGATOR_TRACKPAD_PTP_MODE)
cgen6_report_t ptp_report;
bool prev_ptp_flag, prev_tap_clear = false;
uint8_t last_contact_count = 0;
uint16_t prev_ptp_x, prev_ptp_y;
uint16_t tap_timer = 0;
int16_t ptp_delta_x, ptp_delta_y;
#endif
i2c_status_t cirque_gen6_read_report(uint8_t *data, uint16_t cnt) {
i2c_status_t res = i2c_receive(NAVIGATOR_TRACKPAD_ADDRESS, data, cnt, NAVIGATOR_TRACKPAD_TIMEOUT);
wait_us(cnt * 15);
return res;
}
void cirque_gen6_clear(void) {
uint8_t buf[CGEN6_MAX_PACKET_SIZE];
for (uint8_t i = 0; i < 5; i++) {
wait_ms(1);
if (cirque_gen6_read_report(buf, CGEN6_MAX_PACKET_SIZE) != I2C_STATUS_SUCCESS) {
break;
}
}
}
uint8_t cirque_gen6_read_memory(uint32_t addr, uint8_t *data, uint16_t cnt) {
uint8_t cksum = 0;
uint8_t res = CGEN6_SUCCESS;
uint8_t len[2];
uint16_t read = 0;
uint8_t preamble[8] = {0x01, 0x09, (uint8_t)(addr & (uint32_t)0x000000FF), (uint8_t)((addr & 0x0000FF00) >> 8), (uint8_t)((addr & 0x00FF0000) >> 16), (uint8_t)((addr & 0xFF000000) >> 24), (uint8_t)(cnt & 0x00FF), (uint8_t)((cnt & 0xFF00) >> 8)};
// Read the length of the data + 3 bytes (first 2 bytes for the length and the last byte for the checksum)
// Create a buffer to store the data
uint8_t buf[cnt + 3];
if (i2c_transmit_and_receive(NAVIGATOR_TRACKPAD_ADDRESS, preamble, 8, buf, cnt + 3, NAVIGATOR_TRACKPAD_TIMEOUT) != I2C_STATUS_SUCCESS) {
res |= CGEN6_I2C_FAILED;
}
// Read the data length
for (uint8_t i = 0; i < 2; i++) {
cksum += len[i] = buf[i];
read++;
}
// Populate the data buffer
for (uint16_t i = 2; i < cnt + 2; i++) {
cksum += data[i - 2] = buf[i];
read++;
}
// Check the checksum
if (cksum != buf[read]) {
res |= CGEN6_CKSUM_FAILED;
}
// Check the length (incremented first to account for the checksum)
if (++read != (len[0] | (len[1] << 8))) {
res |= CGEN6_LEN_MISMATCH;
}
wait_ms(1);
return res;
}
uint8_t cirque_gen6_write_memory(uint32_t addr, uint8_t *data, uint16_t cnt) {
uint8_t res = CGEN6_SUCCESS;
uint8_t cksum = 0, i = 0;
uint8_t preamble[8] = {0x00, 0x09, (uint8_t)(addr & 0x000000FF), (uint8_t)((addr & 0x0000FF00) >> 8), (uint8_t)((addr & 0x00FF0000) >> 16), (uint8_t)((addr & 0xFF000000) >> 24), (uint8_t)(cnt & 0x00FF), (uint8_t)((cnt & 0xFF00) >> 8)};
uint8_t buf[cnt + 9];
// Calculate the checksum
for (; i < 8; i++) {
cksum += buf[i] = preamble[i];
}
for (i = 0; i < cnt; i++) {
cksum += buf[i + 8] = data[i];
}
buf[cnt + 8] = cksum;
if (i2c_transmit(NAVIGATOR_TRACKPAD_ADDRESS, buf, cnt + 9, NAVIGATOR_TRACKPAD_TIMEOUT) != I2C_STATUS_SUCCESS) {
res |= CGEN6_I2C_FAILED;
}
wait_ms(1);
return res;
}
uint8_t cirque_gen6_read_reg(uint32_t addr) {
uint8_t data;
uint8_t res = cirque_gen6_read_memory(addr, &data, 1);
if (res != CGEN6_SUCCESS) {
printf("Failed to read 8bits from register at address 0x%08X with error 0x%02X\n", (u_int)addr, res);
return 0;
}
return data;
}
uint16_t cirque_gen6_read_reg_16(uint32_t addr) {
uint8_t buf[2];
uint8_t res = cirque_gen6_read_memory(addr, buf, 2);
if (res != CGEN6_SUCCESS) {
printf("Failed to read 16bits from register at address 0x%08X with error 0x%02X\n", (u_int)addr, res);
return 0;
}
return (buf[1] << 8) | buf[0];
}
uint32_t cirque_gen6_read_reg_32(uint32_t addr) {
uint8_t buf[4];
uint8_t res = cirque_gen6_read_memory(addr, buf, 4);
if (res != CGEN6_SUCCESS) {
printf("Failed to read 32bits from register at address 0x%08X with error 0x%02X\n", (u_int)addr, res);
return 0;
}
return (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
}
uint8_t cirque_gen6_write_reg(uint32_t addr, uint8_t data) {
return cirque_gen6_write_memory(addr, &data, 1);
}
uint8_t cirque_gen6_write_reg_16(uint32_t addr, uint16_t data) {
uint8_t buf[2] = {data & 0xFF, (data >> 8) & 0xFF};
return cirque_gen6_write_memory(addr, buf, 2);
}
uint8_t cirque_gen6_write_reg_32(uint32_t addr, uint32_t data) {
uint8_t buf[4] = {data & 0xFF, (data >> 8) & 0xFF, (data >> 16) & 0xFF, (data >> 24) & 0xFF};
return cirque_gen6_write_memory(addr, buf, 4);
}
uint8_t cirque_gen6_set_relative_mode(void) {
uint8_t feed_config4 = cirque_gen6_read_reg(CGEN6_FEED_CONFIG4);
feed_config4 &= 0xF3;
return cirque_gen6_write_reg(CGEN6_FEED_CONFIG4, feed_config4);
}
uint8_t cirque_gen6_set_ptp_mode(void) {
uint8_t feed_config4 = cirque_gen6_read_reg(CGEN6_FEED_CONFIG4);
feed_config4 &= 0xF7;
feed_config4 |= 0x04;
return cirque_gen6_write_reg(CGEN6_FEED_CONFIG4, feed_config4);
}
uint8_t cirque_gen6_swap_xy(bool set) {
uint8_t xy_config = cirque_gen6_read_reg(CGEN6_XY_CONFIG);
if (set) {
xy_config |= 0x04;
} else {
xy_config &= ~0x04;
}
return cirque_gen6_write_reg(CGEN6_XY_CONFIG, xy_config);
}
uint8_t cirque_gen6_invert_y(bool set) {
uint8_t xy_config = cirque_gen6_read_reg(CGEN6_XY_CONFIG);
if (set) {
xy_config |= 0x02;
} else {
xy_config &= ~0x02;
}
return cirque_gen6_write_reg(CGEN6_XY_CONFIG, xy_config);
}
uint8_t cirque_gen6_invert_x(bool set) {
uint8_t xy_config = cirque_gen6_read_reg(CGEN6_XY_CONFIG);
if (set) {
xy_config |= 0x01;
} else {
xy_config &= ~0x01;
}
return cirque_gen6_write_reg(CGEN6_XY_CONFIG, xy_config);
}
uint8_t cirque_gen6_enable_logical_scaling(bool set) {
uint8_t xy_config = cirque_gen6_read_reg(CGEN6_XY_CONFIG);
if (set) {
xy_config &= ~0x08;
} else {
xy_config |= ~0x08;
}
return cirque_gen6_write_reg(CGEN6_XY_CONFIG, xy_config);
}
bool cirque_gen6_get_gpio_state(uint8_t num) {
uint32_t gpio_states = cirque_gen6_read_reg_32(0x43000000 + gpio_offset_addr + 0x0004);
return ((gpio_states >> num) & 0x000000001);
}
uint32_t cirque_gen_6_read_callback(uint32_t trigger_time, void *cb_arg) {
if (has_motion) {
return NAVIGATOR_TRACKPAD_READ;
}
uint8_t packet[CGEN6_MAX_PACKET_SIZE];
if (cirque_gen6_read_report(packet, CGEN6_MAX_PACKET_SIZE) != I2C_STATUS_SUCCESS) {
return false;
}
uint8_t report_id = packet[2];
#if defined(NAVIGATOR_TRACKPAD_PTP_MODE)
if (report_id == CGEN6_PTP_REPORT_ID) {
ptp_report.confidence = packet[3] & 0x01;
ptp_report.tip = (packet[3] & 0x02) >> 1;
ptp_report.id = (packet[3] & 0xFC) >> 2;
ptp_report.x = packet[5] << 8 | packet[4];
ptp_report.y = packet[7] << 8 | packet[6];
ptp_report.ts = packet[9] << 8 | packet[10];
ptp_report.contact_count = packet[11];
ptp_report.buttons = packet[12];
has_motion = 1;
}
#endif
#if defined(NAVIGATOR_TRACKPAD_RELATIVE_MODE)
if (report_id == CGEN6_MOUSE_REPORT_ID) {
ptp_report.buttons = packet[3];
ptp_report.xDelta = packet[4];
ptp_report.yDelta = packet[5];
amree ptp_report.scrollDelta = packet[6];
ptp_report.panDelta = packet[7];
has_motion = 1;
}
#endif
return NAVIGATOR_TRACKPAD_READ;
}
void dump_ptp_report(void) {
#if defined(NAVIGATOR_TRACKPAD_PTP_MODE)
printf("PTP Report:\n");
printf(" X: %d\n", ptp_report.x);
printf(" Y: %d\n", ptp_report.y);
printf(" Timestamp: %d\n", ptp_report.ts);
printf(" ID: %d\n", ptp_report.id);
printf(" Confidence: %d\n", ptp_report.confidence);
printf(" Tip: %d\n", ptp_report.tip);
printf(" Contact Count: %d\n", ptp_report.contact_count);
printf(" Buttons: %d\n", ptp_report.buttons);
#endif
}
void navigator_trackpad_device_init(void) {
i2c_init();
i2c_status_t status = i2c_ping_address(NAVIGATOR_TRACKPAD_ADDRESS, NAVIGATOR_TRACKPAD_TIMEOUT);
if (status != I2C_STATUS_SUCCESS) {
printf("Failed to ping touchpad\n");
touchpad_init = false;
return;
}
cirque_gen6_clear();
wait_ms(50);
uint8_t resSize = cirque_gen6_write_reg(0x2001080C, 16);
resSize = cirque_gen6_write_reg(0x2001080D, 16);
if (resSize != CGEN6_SUCCESS) {
printf("Failed to set touchpad size\n");
}
uint8_t sizeX = cirque_gen6_read_reg(0x2001080C);
uint8_t sizeY = cirque_gen6_read_reg(0x2001080D);
printf("Touchpad size: %d x %d\n", sizeX, sizeY);
#if defined(NAVIGATOR_TRACKPAD_DEBUG)
uint8_t hardwareId = cirque_gen6_read_reg(CGEN6_HARDWARE_ID);
uint8_t firmwareId = cirque_gen6_read_reg(CGEN6_FIRMWARE_ID);
uint16_t vendorId = cirque_gen6_read_reg_16(CGEN6_VENDOR_ID);
uint16_t productId = cirque_gen6_read_reg_16(CGEN6_PRODUCT_ID);
uint16_t versionId = cirque_gen6_read_reg_16(CGEN6_FIRMWARE_REV);
uint32_t firmwareRev = cirque_gen6_read_reg_32(CGEN6_FIRMWARE_REV);
printf("Touchpad Hardware ID: 0x%02X\n", hardwareId);
printf("Touchpad Firmware ID: 0x%02X\n", firmwareId);
printf("Touchpad Vendor ID: 0x%04X\n", vendorId);
printf("Touchpad Product ID: 0x%04X\n", productId);
printf("Touchpad Version ID: 0x%04X\n", versionId);
uint32_t revision = firmwareRev & 0x00ffffff;
bool uncommittedVersion = firmwareRev & 0x80000000;
bool branchVersion = firmwareRev & 0x40000000;
uint8_t developerId = firmwareRev & 0x3f000000;
printf("Touchpad Firmware Revision: 0x%08X\n", (u_int)revision);
printf("Touchpad Uncommitted Version: %s\n", uncommittedVersion ? "true" : "false");
printf("Touchpad Branch Version: %s\n", branchVersion ? "true" : "false");
printf("Touchpad Developer ID: %d\n", developerId);
#endif
#if defined(NAVIGATOR_TRACKPAD_PTP_MODE)
uint8_t res = cirque_gen6_set_ptp_mode();
#endif
#if defined(NAVIGATOR_TRACKPAD_RELATIVE_MODE)
uint8_t res = cirque_gen6_set_relative_mode();
#endif
if (res != CGEN6_SUCCESS) {
return;
}
// Reset to the default alignment
cirque_gen6_swap_xy(false);
cirque_gen6_invert_x(false);
cirque_gen6_invert_y(false);
cirque_gen6_swap_xy(true);
cirque_gen6_invert_x(true);
cirque_gen6_invert_y(true);
cirque_gen6_enable_logical_scaling(true);
touchpad_init = true;
defer_exec(NAVIGATOR_TRACKPAD_READ, cirque_gen_6_read_callback, NULL);
}
report_mouse_t navigator_trackpad_get_report(report_mouse_t mouse_report) {
if (!has_motion || !touchpad_init) {
if (prev_tap_clear) {
prev_tap_clear = false;
mouse_report.buttons = 0;
}
return mouse_report;
}
#if defined(NAVIGATOR_TRACKPAD_RELATIVE_MODE)
mouse_report.x = ptp_report.xDelta;
mouse_report.y = ptp_report.yDelta;
mouse_report.v = ptp_report.scrollDelta;
mouse_report.h = ptp_report.panDelta;
mouse_report.buttons = ptp_report.buttons;
#endif
#if defined(NAVIGATOR_TRACKPAD_PTP_MODE)
if (!prev_ptp_flag && ptp_report.tip) { // Beginning of a motion
prev_ptp_x = ptp_report.x;
prev_ptp_y = ptp_report.y;
prev_ptp_flag = true;
tap_timer = timer_read();
in_motion = false;
} else if (!ptp_report.tip) { // End of a motion
prev_ptp_flag = false;
if (in_motion == false) { // Register a tap or double tap
if (last_contact_count > 0) {
print("Double tap detected\n");
# ifdef NAVIGATOR_TRACKPAD_ENABLE_DOUBLE_TAP
mouse_report.buttons = pointing_device_handle_buttons(mouse_report.buttons, true, POINTING_DEVICE_BUTTON2);
# endif
} else {
print("Single tap detected\n");
# ifdef NAVIGATOR_TRACKPAD_ENABLE_TAP
mouse_report.buttons = pointing_device_handle_buttons(mouse_report.buttons, true, POINTING_DEVICE_BUTTON1);
# endif
}
prev_tap_clear = true;
}
set_scrolling = false;
} else {
ptp_delta_x = ptp_report.x - prev_ptp_x;
ptp_delta_y = ptp_report.y - prev_ptp_y;
if (timer_elapsed(tap_timer) >= NAVIGATOR_TRACKPAD_TAP_DEBOUNCE) {
if (ptp_report.contact_count > 0) { // More than one finger, return scroll motions
set_scrolling = true;
}
if (ptp_delta_x < 0) {
mouse_report.x = -powf(-ptp_delta_x, 1.2);
} else {
mouse_report.x = powf(ptp_delta_x, 1.2);
}
if (ptp_delta_y < 0) {
mouse_report.y = -powf(-ptp_delta_y, 1.2);
} else {
mouse_report.y = powf(ptp_delta_y, 1.2);
}
prev_ptp_x = ptp_report.x;
prev_ptp_y = ptp_report.y;
in_motion = true;
}
last_contact_count = ptp_report.contact_count;
}
#endif
has_motion = 0;
return mouse_report;
}
void set_cirque_cpi(void) {
// traverse the sequence by compairing the cpi_x value with the current cpi_x value
// set the cpi to the next value in the sequence
switch (current_cpi) {
case CPI_1: {
current_cpi = CPI_2;
break;
}
case CPI_2: {
current_cpi = CPI_3;
break;
}
case CPI_3: {
current_cpi = CPI_4;
break;
}
case CPI_4: {
current_cpi = CPI_5;
break;
}
case CPI_5: {
current_cpi = CPI_6;
break;
}
case CPI_6: {
current_cpi = CPI_7;
break;
}
case CPI_7: {
current_cpi = CPI_1;
break;
}
default: {
current_cpi = CPI_4;
break;
}
}
}
uint16_t navigator_trackpad_get_cpi(void) {
return current_cpi;
}
void restore_cpi(uint8_t cpi) {
current_cpi = cpi;
set_cirque_cpi();
}
void navigator_trackpad_set_cpi(uint16_t cpi) {
if (cpi == 0) { // Decrease one tick
if (current_cpi > 1) {
current_cpi--;
}
} else {
if (current_cpi < CPI_TICKS) {
current_cpi++;
}
}
set_cirque_cpi();
};