keymap-drawer render

This commit is contained in:
nguyenhaiac
2025-02-26 07:38:18 +00:00
committed by github-actions[bot]
parent 49e95e3b35
commit f8b1063597
2 changed files with 15 additions and 7 deletions

View File

@@ -67,8 +67,8 @@ text.footer {
paint-order: stroke;
}
/* styling for combo tap, and key hold/shifted label text */
text.combo, text.hold, text.shifted {
/* styling for combo tap, and key non-tap label text */
text.combo, text.hold, text.shifted, text.left, text.right {
font-size: 11px;
}
@@ -82,12 +82,20 @@ text.shifted {
dominant-baseline: hanging;
}
text.left {
text-anchor: start;
}
text.right {
text-anchor: end;
}
text.layer-activator {
text-decoration: underline;
}
/* styling for hold/shifted label text in combo box */
text.combo.hold, text.combo.shifted {
text.combo.hold, text.combo.shifted, text.combo.left, text.combo.right {
font-size: 8px;
}
@@ -365,9 +373,9 @@ path.combo {
<g transform="translate(30, 398)" class="layer-lower">
<text x="0" y="28" class="label" id="lower">lower:</text>
<g transform="translate(0, 56)">
<g transform="translate(28, 63)" class="key trans keypos-0">
<rect rx="6" ry="6" x="-26" y="-26" width="52" height="52" class="key trans"/>
<text x="0" y="0" class="key trans tap"></text>
<g transform="translate(28, 63)" class="key keypos-0">
<rect rx="6" ry="6" x="-26" y="-26" width="52" height="52" class="key"/>
<text x="0" y="0" class="key tap"><tspan style="font-size: 64%">&amp;studio_un…</tspan></text>
</g>
<g transform="translate(84, 63)" class="key keypos-1">
<rect rx="6" ry="6" x="-26" y="-26" width="52" height="52" class="key"/>

Before

Width:  |  Height:  |  Size: 46 KiB

After

Width:  |  Height:  |  Size: 46 KiB

View File

@@ -3,7 +3,7 @@ layers:
default: ['`', '1', '2', '3', '4', '5', '6', '7', '8', '9', '0', DELETE, ESC, Q, W, E, R, T, Y, U, I, O, P, BSPC, TAB, A, S, D, F, G, H, J, K, L, ;, '''', LSHFT,
Z, X, C, V, B, MUTE, '', N, M, ',', ., /, RSHFT, LGUI, LALT, LCTRL, lower, RET, SPACE, raise, RCTRL, RALT, RGUI]
lower:
- {t: ▽, type: trans}
- '&studio_unlock'
- F1
- F2
- F3